The lines joining the origin to the points of intersection of the line lx + my = 1 and y2= 4ax are at right angles. Show that 4al = 1.
The points of intersection of "lx+my=1" and "y^2=4ax" are:
"lx+my=1\\Rightarrow my=1-lx\\Rightarrow y=\\dfrac{1-lx}m"
"\\left( \\dfrac{1-lx}m\\right)^2=4ax\\Rightarrow \\dfrac{1-2lx+l^2x^2}{m^2}=4ax\\Rightarrow"
"l^2x^2+(-2l-4am^2)x+1=0\\Rightarrow x=\\dfrac{l+2am^2\\pm 2m\\sqrt{a(l+am^2)}}{l^2}"
"\\Rightarrow y=-2am\\mp 2\\sqrt{a(l+am^2)}"
The points of intersection are:
"P\\left( \\dfrac{l+2am^2+2m\\sqrt{a(l+am^2)}}{l^2}, -2am-2\\sqrt{a(l+am^2)}\\right)=\\overrightarrow{OP}"
"Q\\left( \\dfrac{l+2am^2-2m\\sqrt{a(l+am^2)}}{l^2}, -2am+2\\sqrt{a(l+am^2)}\\right)=\\overrightarrow{OQ}"
We know that the lines joining the origin "O" are at right angles: "\\overrightarrow{OP}\\cdot \\overrightarrow{OQ}=0:"
"\\dfrac{(l+2am^2+2m\\sqrt{a(l+am^2)})(l+2am^2-2m\\sqrt{a(l+am^2)})}{l^2\\cdot l^2}+"
"+(-2am-2\\sqrt{a(l+am^2)})(-2am+2\\sqrt{a(l+am^2)})="
"=\\dfrac{1}{l^2}-4la=0 \\Rightarrow \\dfrac{1}{l^2}=4la \\Rightarrow 1=4lal^2\\Rightarrow \\boxed{1=4l^3a}"
We see that the problem statement is incorrect. It is correct that "4al^3=1" is satisfied.
Comments
Leave a comment