Decompose the following into partial fractions
3)5x2+20x+6 / x3+2x2+x
4) x2+2x+3 / (x+1)(x2+2x+4)
Solution 3:
"\\frac{5 x^{2}+20 x+6}{x(x+1)^{2}}=\\frac{A}{x}+\\frac{B}{x+1}+\\frac{C}{(x+1)^{2}}"
"\\\\\n\\Rightarrow 5 x^{2}+20 x+6=A(x+1)^{2}+B x(x+1)+C x"
Equating constants
"6=\\mathrm{A}"
Equating coefficients of "\\mathrm{x}^{2}"
"5=A+B\\\\\n\nB=-1"
Equating coefficients of "x"
"20=2 A+B+C\\\\\n\\Rightarrow 20=12-1+C \\\\\n\\Rightarrow C=9"
"\\therefore \\frac{5 x^{2}+20 x+6}{x(x+1)^{2}}=\\frac{6}{x}-\\frac{1}{x+1}+\\frac{9}{(x+1)^{2}}"
Solution 4:
"\\frac{x^2+2x+3}{(x+1)(x^2+2x+4)}\\\\\n=\\frac{x^2+2x+4-1}{(x+1)(x^2+2x+4)}\\\\\n=\\frac{1}{x+1}-\\frac{1}{(x+1)(x^2+2x+4)}\\\\"
Now decomposing "\\frac{1}{(x+1)(x^2+2x+4)}\\\\" as: "\\frac{A}{x+1}+\\frac{Bx+C}{x^2+2x+4}"
"\\therefore \\frac{1}{(x+1)(x^2+2x+4)}=\\frac{A}{x+1}+\\frac{Bx+C}{x^2+2x+4}\\\\\n\\Rightarrow 1=A(x^2+2x+4)+(Bx+C)(x+1)\\\\\n\\Rightarrow 1=(A+B)x^2+(2A+B+C)x+4A+C"
"\\therefore A+B=0;2A+B+C=0;4A+C=1\\\\\n\\Rightarrow A=-B \\\\\n\\therefore -2B+B+C=0\\\\\n\\Rightarrow B=C\\\\"
So, "4(-B)+B=1\\\\"
"\\Rightarrow B=-\\frac{1}{3}\\\\"
"\\therefore A=\\frac{1}{3},C=-\\frac{1}{3}"
So, "\\frac{1}{(x+1)(x^2+2x+4)}=\\frac{1}{3(x+1)}-\\frac{x+1}{3(x^2+2x+4)}"
Hence, "\\frac{x^2+2x+3}{(x+1)(x^2+2x+4)}=\\frac{4}{3(x+1)}-\\frac{x+1}{3(x^2+2x+4)}"
Comments
Leave a comment