Question #223137

A conic (E) has equation y2+2y+8x+9=0

a) State the nature of (E)

b) Determine its characteristic elements

c) Sketch (E) indicating all the elements.

d) Find the length of the lactus.



1
Expert's answer
2021-09-27T12:31:13-0400

a)


E:y2+2y+8x+9=0E: y^2+2y+8x+9=0

y2+2y+1+8x+8=0y^2+2y+1+8x+8=0

A conic (E) is a parabola. Vertex form:


x=18(y+1)21x=-\dfrac{1}{8}(y+1)^2-1

b)

p=2,k=1,h=1p=-2, k=-1, h=-1

Vertex: (h,k)=(1,1)(h,k)=(−1,−1)

Focus: (h+p,k)=(3,1)(h+p,k)=(-3,-1)

Eccentricity: 11

Directrix: x=hp,x=1x=h-p, x=1

Latus rectum: x=3x=−3

The length of the latus rectum: 88

Axis of symmetry: y=1y=−1

Focal parameter: 1(3)=41-(-3)=4

x-intercept: y=0,x=18(0+1)21=98y=0, x=-\dfrac{1}{8}(0+1)^2-1=-\dfrac{9}{8}

 (9/8,0)(−9/8,0)

No y-intercepts.


(c)



d) Latus rectum: x=3x=−3

Find ends of latus rectum


3=18(y+1)21-3=-\dfrac{1}{8}(y+1)^2-1

y+1=±4y+1=\pm4

(3,5),(3,3)(-3, -5), (-3, 3)

The length of the latus rectum


3(5)=83-(-5)=8


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS