Solution.
We can use Heron formula which states
The area of a triangle with sides a,b,c is equal to
S = p ( p − a ) ( p − b ) ( p − c ) S=\sqrt{p(p-a)(p-b)(p-c)} S = p ( p − a ) ( p − b ) ( p − c )
where p = a + b + c 2 . p=\frac{a+b+c}{2}. p = 2 a + b + c .
Using the formula to find the distance between two points A ( x 1 , x 2 , x 3 ) , B ( y 1 , y 2 , y 3 ) A(x_1,x_2,x_3), B(y_1,y_2,y_3) A ( x 1 , x 2 , x 3 ) , B ( y 1 , y 2 , y 3 )
which is
A B = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + ( x 3 − y 3 ) 2 AB=\sqrt{(x_1-y_1)^2+(x_2-y_2)^2+(x_3-y_3)^2} A B = ( x 1 − y 1 ) 2 + ( x 2 − y 2 ) 2 + ( x 3 − y 3 ) 2
we can calculate the length of sides between the three points given
let say A(5,3,2), B(-2,7,-1) and C(4,-2,6).
After that, we substitute to Heron formula.
A B = ( 5 + 2 ) 2 + ( 3 − 7 ) 2 + ( 2 + 1 ) 2 = 49 + 16 + 9 = 74 . B C = ( − 2 − 4 ) 2 + ( 7 + 2 ) 2 + ( − 1 − 6 ) 2 = 36 + 81 + 49 = 166 . A C = ( 5 − 4 ) 2 + ( 3 + 2 ) 2 + ( 2 − 6 ) 2 = 1 + 25 + 16 = 42 . p = a + b + c 2 = 1 2 ( 8.6 + 12.88 + 6.48 ) = 13.98 S = ( 13.98 ) ( 13.98 − 8.6 ) ( 13.98 − 12.88 ) ( 13.98 − 6.48 ) = 24.9 square units Answer. 24.9 square units. AB=\sqrt{(5+2)^2+(3-7)^2+(2+1)^2}=\sqrt{49+16+9}=
\sqrt{74}.\newline
BC=\sqrt{(-2-4)^2+(7+2)^2+(-1-6)^2}=\sqrt{36+81+49}=
\sqrt{166}.\newline
AC=\sqrt{(5-4)^2+(3+2)^2+(2-6)^2}=\sqrt{1+25+16}=
\sqrt{42}.\newline
p = \frac{
a + b + c}{
2}
= \frac{
1}{
2}
( 8.6 + 12.88 + 6.48 ) = 13.98\newline
S=\sqrt{(13.98)(13.98 - 8.6)(13.98 - 12.88)(13.98 - 6.48) }=24.9 \text{square units}
\newline
\text{Answer. 24.9 square units.} A B = ( 5 + 2 ) 2 + ( 3 − 7 ) 2 + ( 2 + 1 ) 2 = 49 + 16 + 9 = 74 . BC = ( − 2 − 4 ) 2 + ( 7 + 2 ) 2 + ( − 1 − 6 ) 2 = 36 + 81 + 49 = 166 . A C = ( 5 − 4 ) 2 + ( 3 + 2 ) 2 + ( 2 − 6 ) 2 = 1 + 25 + 16 = 42 . p = 2 a + b + c = 2 1 ( 8.6 + 12.88 + 6.48 ) = 13.98 S = ( 13.98 ) ( 13.98 − 8.6 ) ( 13.98 − 12.88 ) ( 13.98 − 6.48 ) = 24.9 square units Answer. 24.9 square units.
Comments