Find the equation of the plane through the points (1,-2,4) ,(3,1,-2) and (2,-1,6)
"\\text{The equation of the plane is given by}\n\\\\(\\overrightarrow{r} - \\overrightarrow{a}).\\overrightarrow{n}=0\n\\\\\\overrightarrow{r}.\\overrightarrow{n}=\\overrightarrow{a}.\\overrightarrow{n}\n\\\\\\text{where $\\overrightarrow{a}=(1,-2,4), \\overrightarrow{r} = (x,y,z)$}\\\\\\text{Next, we compute $\\overrightarrow{n}$, to this we compute the following vectors and find the vector}\n\\\\\\text{cross product of the 2 vectors}\n\\\\(3,1,-2)-(1,-2,4)=(2,3,-6)\n\\\\(2,-1,6)-(3,1,-2) = (-1,-2,8)\n\\\\\\therefore \\overrightarrow{n} = \\begin{vmatrix} i&j&k\\\\\n2&3&-6\\\\\n-1 & -2&8\n\\end{vmatrix}\n\\\\\\implies \\overrightarrow{n}=12i-10j-k\n\\\\\\text{Next, we substitute the values of $\\overrightarrow{n}$, $\\overrightarrow{a}$ and $\\overrightarrow{r}$ in equation(1), we have}\n\\\\ 12x-10y-z=28"
Comments
Leave a comment