Answer to Question #222326 in Analytic Geometry for john

Question #222326

Find the equation of the plane through the points (1,-2,4) ,(3,1,-2) and (2,-1,6)


1
Expert's answer
2021-08-18T07:40:28-0400

The equation of the plane is given by(ra).n=0r.n=a.nwhere a=(1,2,4),r=(x,y,z)Next, we compute n, to this we compute the following vectors and find the vectorcross product of the 2 vectors(3,1,2)(1,2,4)=(2,3,6)(2,1,6)(3,1,2)=(1,2,8)n=ijk236128    n=12i10jkNext, we substitute the values of na and r in equation(1), we have12x10yz=28\text{The equation of the plane is given by} \\(\overrightarrow{r} - \overrightarrow{a}).\overrightarrow{n}=0 \\\overrightarrow{r}.\overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n} \\\text{where $\overrightarrow{a}=(1,-2,4), \overrightarrow{r} = (x,y,z)$}\\\text{Next, we compute $\overrightarrow{n}$, to this we compute the following vectors and find the vector} \\\text{cross product of the 2 vectors} \\(3,1,-2)-(1,-2,4)=(2,3,-6) \\(2,-1,6)-(3,1,-2) = (-1,-2,8) \\\therefore \overrightarrow{n} = \begin{vmatrix} i&j&k\\ 2&3&-6\\ -1 & -2&8 \end{vmatrix} \\\implies \overrightarrow{n}=12i-10j-k \\\text{Next, we substitute the values of $\overrightarrow{n}$, $\overrightarrow{a}$ and $\overrightarrow{r}$ in equation(1), we have} \\ 12x-10y-z=28


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment