Find the area of the triangle determined by the points (2,-1,0),(2,0,4) and (0,2,3)
Let "\\overline {u}=(2-2,0-(-1),4-0)=(0,1,4)" be the vector joining "(2,-1,0)" and "(2,0,4)." Let "\\overline {v}=(0-2,2-(-1),3-0)=(-2,3,3)" be the vector joining "(2,-1,0)" and "(0,2,3)."
Let us find the vector product
"\\overline{u}\\times\\overline{v}=\n\\begin{vmatrix}i & j & k\\\\\n0 & 1 & 4\\\\\n-2 & 3 & 3\n\\end{vmatrix}\n=-9i-8j+2k."
It follows that the area of the triangle determined by the points"(2,-1,0),(2,0,4)" and "(0,2,3)" is equal to
"A=\\frac{1}{2}|\\overline{u}\\times\\overline{v}|=\\frac{1}{2}\\sqrt{(-9)^2+(-8)^2+2^2}=\\frac{1}{2}\\sqrt{149}\\approx 6.1" (square units)
Comments
Leave a comment