Find the area of the triangle determined by the points (2,-1,0),(2,0,4) and (0,2,3)
Let u‾=(2−2,0−(−1),4−0)=(0,1,4)\overline {u}=(2-2,0-(-1),4-0)=(0,1,4)u=(2−2,0−(−1),4−0)=(0,1,4) be the vector joining (2,−1,0)(2,-1,0)(2,−1,0) and (2,0,4).(2,0,4).(2,0,4). Let v‾=(0−2,2−(−1),3−0)=(−2,3,3)\overline {v}=(0-2,2-(-1),3-0)=(-2,3,3)v=(0−2,2−(−1),3−0)=(−2,3,3) be the vector joining (2,−1,0)(2,-1,0)(2,−1,0) and (0,2,3).(0,2,3).(0,2,3).
Let us find the vector product
u‾×v‾=∣ijk014−233∣=−9i−8j+2k.\overline{u}\times\overline{v}= \begin{vmatrix}i & j & k\\ 0 & 1 & 4\\ -2 & 3 & 3 \end{vmatrix} =-9i-8j+2k.u×v=∣∣i0−2j13k43∣∣=−9i−8j+2k.
It follows that the area of the triangle determined by the points(2,−1,0),(2,0,4)(2,-1,0),(2,0,4)(2,−1,0),(2,0,4) and (0,2,3)(0,2,3)(0,2,3) is equal to
A=12∣u‾×v‾∣=12(−9)2+(−8)2+22=12149≈6.1A=\frac{1}{2}|\overline{u}\times\overline{v}|=\frac{1}{2}\sqrt{(-9)^2+(-8)^2+2^2}=\frac{1}{2}\sqrt{149}\approx 6.1A=21∣u×v∣=21(−9)2+(−8)2+22=21149≈6.1 (square units)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments