Find the equation of the plane through the points (1,1,1),(-4,0,2) and (3,-1,0)
A(1;1;1);B(−4;0;2);;C(3;−1;0);∣x−x1x2−x1x3−x1y−y1y2−y1y3−y1z−z1z2−z1z3−z1∣=0→∣x−1−52y−y1−1−2z−z11−1∣=0→(x−1)×(−1)2×∣−1−21−1∣++(y−1)×(−1)3×[−521−1]++(z−1)×(−1)4×∣−52−1−2∣=0→3(x−1)−3(y−1)+12(z−1)=0→3x−3y+12z−12=0Answer:3x−3y+12z−12=0A(1;1;1);B(-4;0;2);;C(3;-1;0);\\\begin{vmatrix} x-x_1 & x_2-x_1 &x_3-x_1 \\ y-y_1 & y_2-y_1 &y_3-y_1\\z-z_1 &z_2-z_1 &z_3-z_1 \end{vmatrix}=0\rightarrow\\\begin{vmatrix} x-1 & -5 &2 \\ y-y_1 & -1&-2\\z-z_1 &1 &-1 \end{vmatrix}=0\rightarrow\\(x-1)\times(-1)^2\times\begin{vmatrix} -1 & -2 \\ 1 & -1 \end{vmatrix}+\\+(y-1)\times(-1)^3\times\begin{bmatrix} -5 & 2 \\ 1 & -1 \end{bmatrix}+\\+(z-1)\times(-1)^4\times\begin{vmatrix} -5 & 2 \\ -1 & -2 \end{vmatrix}=0\rightarrow\\3(x-1)-3(y-1)+12(z-1)=0\rightarrow\\3x-3y+12z-12=0\\ Answer:3x-3y+12z-12=0A(1;1;1);B(−4;0;2);;C(3;−1;0);∣∣x−x1y−y1z−z1x2−x1y2−y1z2−z1x3−x1y3−y1z3−z1∣∣=0→∣∣x−1y−y1z−z1−5−112−2−1∣∣=0→(x−1)×(−1)2×∣∣−11−2−1∣∣++(y−1)×(−1)3×[−512−1]++(z−1)×(−1)4×∣∣−5−12−2∣∣=0→3(x−1)−3(y−1)+12(z−1)=0→3x−3y+12z−12=0Answer:3x−3y+12z−12=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments