Q1
For the line to be parallel to the line − x + 3 y − 2 z = 6 -x+3y-2z=6 − x + 3 y − 2 z = 6 .Then,
the would be − x + 3 y − 2 z = k -x+3y-2z=k − x + 3 y − 2 z = k . To get k,
Since the line passes through the origin.
k = 0 k=0 k = 0
The line is therefore, − x + 3 y − 2 z = 0 -x+3y-2z=0 − x + 3 y − 2 z = 0
Q2
( − 1 , − 2 , 0 ) = ( x o , y o , z o ) T h e d i s t a n c e f r o m t h e e q u a t i o n A x + B y + C z + D = 0 i s d = ∣ A x o + B y o + C z o + D ∣ A 2 + B 2 + C 2 A = 3 , B = − 1 , C = 4 , D = 2 d = ∣ 3 ( − 1 ) − 1 ( − 2 ) + 4 ( 0 ) + 2 ∣ 3 2 + ( − 1 ) 2 + 4 2 d = 1 26 u n i t (-1,-2,0)=(x_o,y_o,z_o)\\
The\ distance\ from\ the\\ equation\ Ax+By+Cz+D=0\ is\\
d=\dfrac{|Ax_o+By_o+Cz_o+D|}{\sqrt{A^2+B^2+C^2}}\\
A=3,B=-1,C=4,D=2\\
d=\dfrac{|3(-1)-1(-2)+4(0)+2|}{\sqrt{3^2+(-1)^2+4^2}}\\
d=\dfrac{1}{\sqrt{26}}unit ( − 1 , − 2 , 0 ) = ( x o , y o , z o ) T h e d i s t an ce f ro m t h e e q u a t i o n A x + B y + C z + D = 0 i s d = A 2 + B 2 + C 2 ∣ A x o + B y o + C z o + D ∣ A = 3 , B = − 1 , C = 4 , D = 2 d = 3 2 + ( − 1 ) 2 + 4 2 ∣3 ( − 1 ) − 1 ( − 2 ) + 4 ( 0 ) + 2∣ d = 26 1 u ni t
Comments