Express the following equations of a parabola in standard form and in each case state the coordinates of its vertex,focus and the ends of the latus rectum.
(a) x^2− 2x − 4y = 0,
(b) y^2 + 12x − 48 = 0,
(c) x^2 − 6x − 2y + 7 = 0.
(a)
"(x-1)^2=4\\cdot1(y+\\dfrac{1}{4})"
"p=1>0"
"h=1, k=-\\dfrac{1}{4}"
Vertex: "V(1, -\\dfrac{1}{4})"
Focus: "F(1, \\dfrac{3}{4})"
Latus rectum: "y=\\dfrac{3}{4}"
"x^2-2x-3=0"
"(x+1)(x-3)=0"
"x_1=-1, x_2=3"
The ends of the latus rectum
(b)
"y^2=-4\\cdot3(x-4)"
"p=-3<0"
"h=4, k=0"
Vertex: "V(4, 0)"
Focus: "F(1, 0)"
Latus rectum: "x=1"
"y^2=36"
"y_1=-6, y_2=6"
The ends of the latus rectum
(c)
"x^2-6x+9=2y+2"
"(x-3)^2=4\\cdot(\\dfrac{1}{2})(y+1)"
"p=\\dfrac{1}{2}>0"
"h=3, k=-1"
"k+p=-1+\\dfrac{1}{2}=-\\dfrac{1}{2}"Vertex: "V(3, -1)"
Focus: "F(3, -\\dfrac{1}{2})"
Latus rectum: "y=-\\dfrac{1}{2}"
"x^2 \u2212 6x \u2212 2(-\\dfrac{1}{2}) + 7 =0""x^2-6x+8=0"
"(x-2)(x-4)=0"
"x_1=2, x_2=4"
The ends of the latus rectum
Comments
Leave a comment