Answer to Question #219588 in Analytic Geometry for Bless

Question #219588

Express the following equations of a parabola in standard form and in each case state the coordinates of its vertex,focus and the ends of the latus rectum.

(a) x^2− 2x − 4y = 0,

(b) y^2 + 12x − 48 = 0,

(c) x^2 − 6x − 2y + 7 = 0.


1
Expert's answer
2021-07-22T11:13:54-0400

(a)


x22x+1=4y+1x^2-2x+1=4y+1

(x1)2=41(y+14)(x-1)^2=4\cdot1(y+\dfrac{1}{4})

p=1>0p=1>0


h=1,k=14h=1, k=-\dfrac{1}{4}


k+p=14+1=34k+p=-\dfrac{1}{4}+1=\dfrac{3}{4}

Vertex: V(1,14)V(1, -\dfrac{1}{4})


Focus: F(1,34)F(1, \dfrac{3}{4})

Latus rectum: y=34y=\dfrac{3}{4}


x22x+1=4(34)+1x^2-2x+1=4(\dfrac{3}{4})+1

x22x3=0x^2-2x-3=0

(x+1)(x3)=0(x+1)(x-3)=0

x1=1,x2=3x_1=-1, x_2=3

The ends of the latus rectum


(1,34),(3,34)(-1, \dfrac{3}{4}), (3, \dfrac{3}{4})


(b)


y2+12x48=0y^2 + 12x − 48 = 0

y2=43(x4)y^2=-4\cdot3(x-4)

p=3<0p=-3<0


h=4,k=0h=4, k=0


h+p=43=1h+p=4-3=1

Vertex: V(4,0)V(4, 0)


Focus: F(1,0)F(1, 0)

Latus rectum: x=1x=1


y2+12(1)48=0y^2 + 12(1) − 48 = 0

y2=36y^2=36

y1=6,y2=6y_1=-6, y_2=6

The ends of the latus rectum


(1,6),(1,6)(1, -6), (1, 6)



(c)


x26x2y+7=0x^2 − 6x − 2y + 7 = 0

x26x+9=2y+2x^2-6x+9=2y+2

(x3)2=4(12)(y+1)(x-3)^2=4\cdot(\dfrac{1}{2})(y+1)

p=12>0p=\dfrac{1}{2}>0


h=3,k=1h=3, k=-1

k+p=1+12=12k+p=-1+\dfrac{1}{2}=-\dfrac{1}{2}


Vertex: V(3,1)V(3, -1)


Focus: F(3,12)F(3, -\dfrac{1}{2})

Latus rectum: y=12y=-\dfrac{1}{2}

x26x2(12)+7=0x^2 − 6x − 2(-\dfrac{1}{2}) + 7 =0

x26x+8=0x^2-6x+8=0

(x2)(x4)=0(x-2)(x-4)=0

x1=2,x2=4x_1=2, x_2=4

The ends of the latus rectum


(2,12),(3,12)(2, -\dfrac{1}{2}), (3, -\dfrac{1}{2})





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment