1.
a)
C ( 2 , 3 ) , 2 a = 8 , 2 b = 4 C(2, 3), 2a=8, 2b=4 C ( 2 , 3 ) , 2 a = 8 , 2 b = 4
( x − 2 ) 2 ( 8 / 2 ) 2 + ( y − 3 ) 2 ( 4 / 2 ) 2 = 1 \dfrac{(x-2)^2}{(8/2)^2}+\dfrac{(y-3)^2}{(4/2)^2}=1 ( 8/2 ) 2 ( x − 2 ) 2 + ( 4/2 ) 2 ( y − 3 ) 2 = 1
( x − 2 ) 2 16 + ( y − 3 ) 2 4 = 1 \dfrac{(x-2)^2}{16}+\dfrac{(y-3)^2}{4}=1 16 ( x − 2 ) 2 + 4 ( y − 3 ) 2 = 1 b)
C ( 1 , − 2 ) , 2 a = 8 , ε = c a = a 2 − b 2 a = 3 2 C(1, -2), 2a=8, \varepsilon=\dfrac{c}{a}=\dfrac{\sqrt{a^2-b^2}}{a}=\dfrac{\sqrt{3}}{2} C ( 1 , − 2 ) , 2 a = 8 , ε = a c = a a 2 − b 2 = 2 3
a 2 − b 2 = 3 4 a 2 a^2-b^2=\dfrac{3}{4}a^2 a 2 − b 2 = 4 3 a 2
b = a 2 = 2 b=\dfrac{a}{2}=2 b = 2 a = 2
( x − 1 ) 2 16 + ( y + 2 ) 2 4 = 1 \dfrac{(x-1)^2}{16}+\dfrac{(y+2)^2}{4}=1 16 ( x − 1 ) 2 + 4 ( y + 2 ) 2 = 1
2.
a)
F 1 ( − 2 , 1 ) , F 2 ( 4 , 1 ) , 2 a = 10 F_1(-2,1), F_2(4, 1), 2a=10 F 1 ( − 2 , 1 ) , F 2 ( 4 , 1 ) , 2 a = 10
a = 5 a=5 a = 5
k = 1 , h − c = − 2 , h + c = 4 k=1, h-c=-2, h+c=4 k = 1 , h − c = − 2 , h + c = 4 C ( 1 , 1 ) C(1, 1) C ( 1 , 1 )
c = a 2 − b 2 = 3 c=\sqrt{a^2-b^2}=3 c = a 2 − b 2 = 3
b = 4 b=4 b = 4
( x − 1 ) 2 25 + ( y − 1 ) 2 16 = 1 \dfrac{(x-1)^2}{25}+\dfrac{(y-1)^2}{16}=1 25 ( x − 1 ) 2 + 16 ( y − 1 ) 2 = 1
b)
F 1 ( − 3 , 0 ) , F 2 ( − 3 , 4 ) , 2 b = 6 F_1(-3,0), F_2(-3, 4), 2b=6 F 1 ( − 3 , 0 ) , F 2 ( − 3 , 4 ) , 2 b = 6
b = 3 b=3 b = 3
h = − 3 , k − c = 0 , k + c = 4 h=-3, k-c=0, k+c=4 h = − 3 , k − c = 0 , k + c = 4 C ( − 3 , 2 ) C(-3, 2) C ( − 3 , 2 )
c = a 2 − b 2 = 2 c=\sqrt{a^2-b^2}=2 c = a 2 − b 2 = 2
a = 13 a=\sqrt{13} a = 13
( x + 3 ) 2 9 + ( y − 2 ) 2 13 = 1 \dfrac{(x+3)^2}{9}+\dfrac{(y-2)^2}{13}=1 9 ( x + 3 ) 2 + 13 ( y − 2 ) 2 = 1
3.
a)
F 1 ( − 2 , 2 ) , F 2 ( 4 , 2 ) , c a = 3 5 F_1(-2,2), F_2(4, 2), \dfrac{c}{a}=\dfrac{3}{5} F 1 ( − 2 , 2 ) , F 2 ( 4 , 2 ) , a c = 5 3
k = 2 , h − c = − 2 , h + c = 4 k=2,h-c=-2, h+c=4 k = 2 , h − c = − 2 , h + c = 4 C ( 1 , 2 ) C(1, 2) C ( 1 , 2 )
c = a 2 − b 2 = 3 c=\sqrt{a^2-b^2}=3 c = a 2 − b 2 = 3
a = 3 ( 3 5 ) = 5 , b = 5 2 − 3 2 = 4 a=3(\dfrac{3}{5})=5, b=\sqrt{5^2-3^2}=4 a = 3 ( 5 3 ) = 5 , b = 5 2 − 3 2 = 4
( x − 1 ) 2 25 + ( y − 2 ) 2 16 = 1 \dfrac{(x-1)^2}{25}+\dfrac{(y-2)^2}{16}=1 25 ( x − 1 ) 2 + 16 ( y − 2 ) 2 = 1
b)
F ( ± 2 , 0 ) , x = ± 8 F(\pm2,0), x=\pm8 F ( ± 2 , 0 ) , x = ± 8
k = 0 , k=0, k = 0 ,
h + a e = 2 , h − a e = − 2 h+ae=2, h-ae=-2 h + a e = 2 , h − a e = − 2
h + a e = 8 , h − a e = − 8 h+\dfrac{a}{e}=8, h-\dfrac{a}{e}=-8 h + e a = 8 , h − e a = − 8
h = 0 h=0 h = 0
a = 8 e , 8 e 2 = 2 a=8e, 8e^2=2 a = 8 e , 8 e 2 = 2
e = c a = 1 2 , a = 4 , c = a 2 − b 2 = 2 e=\dfrac{c}{a}=\dfrac{1}{2}, a=4, c=\sqrt{a^2-b^2}=2 e = a c = 2 1 , a = 4 , c = a 2 − b 2 = 2 C ( 0 , 0 ) C(0, 0) C ( 0 , 0 )
b = 2 3 b=2\sqrt{3} b = 2 3
x 2 16 + y 2 12 = 1 \dfrac{x^2}{16}+\dfrac{y^2}{12}=1 16 x 2 + 12 y 2 = 1
4.
a)
F 1 ( 0 , 0 ) F_1(0, 0) F 1 ( 0 , 0 )
V 1 ( 5 , 0 ) V_1(5,0) V 1 ( 5 , 0 )
e = 0.5 e=0.5 e = 0.5
k = 0 , k=0, k = 0 ,
h + a e = 0 , h + a = 5 h+ae=0, h+a=5 h + a e = 0 , h + a = 5
h + 0.5 a = 0 , h + a = 5 h+0.5a=0, h+a=5 h + 0.5 a = 0 , h + a = 5
a = 10 , h = − 5 a=10, h=-5 a = 10 , h = − 5 or
h − a e = 0 , h + a = 5 h-ae=0, h+a=5 h − a e = 0 , h + a = 5
h − 0.5 a = 0 , h + a = 5 h-0.5a=0, h+a=5 h − 0.5 a = 0 , h + a = 5
a = 10 3 , h = 5 3 a=\dfrac{10}{3}, h=\dfrac{5}{3} a = 3 10 , h = 3 5
a = 10 , h = − 5 a=10, h=-5 a = 10 , h = − 5 C ( − 5 , 0 ) C(-5,0) C ( − 5 , 0 )
c = a 2 − b 2 = 5 c=\sqrt{a^2-b^2}=5 c = a 2 − b 2 = 5
b = 5 3 b=5\sqrt{3} b = 5 3
( x + 5 ) 2 100 + y 2 75 = 1 \dfrac{(x+5)^2}{100}+\dfrac{y^2}{75}=1 100 ( x + 5 ) 2 + 75 y 2 = 1
a = 10 3 , h = 5 3 a=\dfrac{10}{3}, h=\dfrac{5}{3} a = 3 10 , h = 3 5
C ( 5 3 , 0 ) C(\dfrac{5}{3},0) C ( 3 5 , 0 )
c = a 2 − b 2 = 5 3 c=\sqrt{a^2-b^2}=\dfrac{5}{3} c = a 2 − b 2 = 3 5
b = 5 3 3 b=\dfrac{5\sqrt{3}}{3} b = 3 5 3
( x − 5 3 ) 2 100 / 9 + y 2 75 / 9 = 1 \dfrac{(x-\dfrac{5}{3})^2}{100/9}+\dfrac{y^2}{75/9}=1 100/9 ( x − 3 5 ) 2 + 75/9 y 2 = 1
b)
F 1 ( 0 , 0 ) F_1(0, 0) F 1 ( 0 , 0 )
V 1 ( 0 , 2 ) V_1(0,2) V 1 ( 0 , 2 )
e = 0.6 e=0.6 e = 0.6
h = 0 , h=0, h = 0 , k + a e = 0 , k + a = 2 k+ae=0, k+a=2 k + a e = 0 , k + a = 2
k + 0.6 a = 0 , k + a = 2 k+0.6a=0, k+a=2 k + 0.6 a = 0 , k + a = 2
a = 5 , k = − 3 a=5, k=-3 a = 5 , k = − 3 or
k − a e = 0 , k + a = 2 k-ae=0, k+a=2 k − a e = 0 , k + a = 2
k − 0.6 a = 0 , k + a = 2 k-0.6a=0, k+a=2 k − 0.6 a = 0 , k + a = 2
a = 5 4 , k = 3 4 a=\dfrac{5}{4}, k=\dfrac{3}{4} a = 4 5 , k = 4 3
a = 5 , k = − 3 a=5, k=-3 a = 5 , k = − 3 C ( 0 , − 3 ) C(0,-3) C ( 0 , − 3 )
c = a 2 − b 2 = 3 c=\sqrt{a^2-b^2}=3 c = a 2 − b 2 = 3
b = 4 b=4 b = 4
x 2 16 + ( y + 3 ) 2 25 = 1 \dfrac{x^2}{16}+\dfrac{(y+3)^2}{25}=1 16 x 2 + 25 ( y + 3 ) 2 = 1
a = 5 4 , k = 3 4 a=\dfrac{5}{4}, k=\dfrac{3}{4} a = 4 5 , k = 4 3
C ( 0 , 3 4 ) C(0,\dfrac{3}{4}) C ( 0 , 4 3 )
c = a 2 − b 2 = 3 4 c=\sqrt{a^2-b^2}=\dfrac{3}{4} c = a 2 − b 2 = 4 3
b = 1 b=1 b = 1
x 2 1 + ( y − 3 4 ) 2 25 / 16 = 1 \dfrac{x^2}{1}+\dfrac{(y-\dfrac{3}{4})^2}{25/16}=1 1 x 2 + 25/16 ( y − 4 3 ) 2 = 1
5.
a)
Center ( 1 , 3 ) (1, 3) ( 1 , 3 )
Vertices ( 1 , − 1 ) (1, -1) ( 1 , − 1 )
( x − h ) 2 b 2 + ( y − k ) 2 a 2 = 1 \dfrac{(x-h)^2}{b^2}+\dfrac{(y-k)^2}{a^2}=1 b 2 ( x − h ) 2 + a 2 ( y − k ) 2 = 1 Center ( h , k ) (h, k) ( h , k )
Vertices ( h , k ± a ) (h, k\pm a) ( h , k ± a )
h = 1 , k = 3 h=1, k=3 h = 1 , k = 3
3 − a = − 1 = > a = 4 3-a=-1=>a=4 3 − a = − 1 => a = 4 Passing through the origin
( 0 − 1 ) 2 b 2 + ( 0 − 3 ) 2 4 2 = 1 \dfrac{(0-1)^2}{b^2}+\dfrac{(0-3)^2}{4^2}=1 b 2 ( 0 − 1 ) 2 + 4 2 ( 0 − 3 ) 2 = 1
b 2 = 16 / 7 b^2=16/7 b 2 = 16/7
( x − 1 ) 2 16 / 7 + ( y − 3 ) 2 16 = 1 \dfrac{(x-1)^2}{16/7}+\dfrac{(y-3)^2}{16}=1 16/7 ( x − 1 ) 2 + 16 ( y − 3 ) 2 = 1
b)
Center ( 1 , 1 ) (1, 1) ( 1 , 1 )
Vertices ( 3 , 1 ) (3, 1) ( 3 , 1 )
( x − h ) 2 a 2 + ( y − k ) 2 b 2 = 1 \dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1 a 2 ( x − h ) 2 + b 2 ( y − k ) 2 = 1 Center ( h , k ) (h, k) ( h , k )
Vertices ( h ± a , k ) (h\pm a, k) ( h ± a , k )
h = 1 , k = 1 h=1, k=1 h = 1 , k = 1
1 + a = 3 = > a = 2 1+a=3=>a=2 1 + a = 3 => a = 2 Passing through the origin
( 0 − 1 ) 2 2 2 + ( 0 − 1 ) 2 b 2 = 1 \dfrac{(0-1)^2}{2^2}+\dfrac{(0-1)^2}{b^2}=1 2 2 ( 0 − 1 ) 2 + b 2 ( 0 − 1 ) 2 = 1
b 2 = 4 / 3 b^2=4/3 b 2 = 4/3
( x − 1 ) 2 4 + ( y − 1 ) 2 4 / 3 = 1 \dfrac{(x-1)^2}{4}+\dfrac{(y-1)^2}{4/3}=1 4 ( x − 1 ) 2 + 4/3 ( y − 1 ) 2 = 1
Comments