Write the equation of the ellipse which satisfies the given conditions.
1a. Center (2, 3), horizontal axis 8, vertical axis 4
b. Center (1, -2), horizontal major axis 8, eccentricity
2a. Foci (-2,1) and (4, 1), major axis 10
b. Foci (-3,0) and (-3, 4), minor axis 6
3a. Foci (-2,2) and (4,2), eccentricity
b. Foci (+2, 0), directrices x = +8
4a. Focus (0,0), vertex (5,0), eccentricity 0.5
b. Focus (0,0), vertex (0, 2), eccentricity 0.6
5a. Center (1,3), V(1,-1), and passing through the origin
b. Center (1, 1), V(3, 1), and passing through the origin
1.
a)
"C(2, 3), 2a=8, 2b=4"
"\\dfrac{(x-2)^2}{16}+\\dfrac{(y-3)^2}{4}=1"
b)
"C(1, -2), 2a=8, \\varepsilon=\\dfrac{c}{a}=\\dfrac{\\sqrt{a^2-b^2}}{a}=\\dfrac{\\sqrt{3}}{2}"
"b=\\dfrac{a}{2}=2"
"\\dfrac{(x-1)^2}{16}+\\dfrac{(y+2)^2}{4}=1"
2.
a)
"F_1(-2,1), F_2(4, 1), 2a=10"
"a=5"
"k=1, h-c=-2, h+c=4"
"C(1, 1)"
"b=4"
"\\dfrac{(x-1)^2}{25}+\\dfrac{(y-1)^2}{16}=1"
b)
"F_1(-3,0), F_2(-3, 4), 2b=6"
"b=3"
"h=-3, k-c=0, k+c=4"
"C(-3, 2)"
"a=\\sqrt{13}"
"\\dfrac{(x+3)^2}{9}+\\dfrac{(y-2)^2}{13}=1"
3.
a)
"F_1(-2,2), F_2(4, 2), \\dfrac{c}{a}=\\dfrac{3}{5}"
"k=2,h-c=-2, h+c=4"
"C(1, 2)"
"a=3(\\dfrac{3}{5})=5, b=\\sqrt{5^2-3^2}=4"
b)
"F(\\pm2,0), x=\\pm8"
"k=0,"
"h+ae=2, h-ae=-2"
"h+\\dfrac{a}{e}=8, h-\\dfrac{a}{e}=-8"
"h=0"
"a=8e, 8e^2=2"
"e=\\dfrac{c}{a}=\\dfrac{1}{2}, a=4, c=\\sqrt{a^2-b^2}=2"
"C(0, 0)"
4.
a)
"F_1(0, 0)"
"V_1(5,0)"
"e=0.5"
"h+ae=0, h+a=5"
"a=10, h=-5"
or
"h-0.5a=0, h+a=5"
"a=\\dfrac{10}{3}, h=\\dfrac{5}{3}"
"C(-5,0)"
"b=5\\sqrt{3}"
"\\dfrac{(x+5)^2}{100}+\\dfrac{y^2}{75}=1"
"C(\\dfrac{5}{3},0)"
"c=\\sqrt{a^2-b^2}=\\dfrac{5}{3}""b=\\dfrac{5\\sqrt{3}}{3}"
"\\dfrac{(x-\\dfrac{5}{3})^2}{100\/9}+\\dfrac{y^2}{75\/9}=1"
b)
"F_1(0, 0)"
"V_1(0,2)"
"e=0.6"
"h=0,""k+ae=0, k+a=2""a=5, k=-3"
or
"k-0.6a=0, k+a=2"
"a=\\dfrac{5}{4}, k=\\dfrac{3}{4}"
"C(0,-3)"
"c=\\sqrt{a^2-b^2}=3""b=4"
"\\dfrac{x^2}{16}+\\dfrac{(y+3)^2}{25}=1"
"C(0,\\dfrac{3}{4})"
"c=\\sqrt{a^2-b^2}=\\dfrac{3}{4}""b=1"
"\\dfrac{x^2}{1}+\\dfrac{(y-\\dfrac{3}{4})^2}{25\/16}=1"
5.
a)
Center "(1, 3)"
Vertices "(1, -1)"
Center "(h, k)"
Vertices "(h, k\\pm a)"
"3-a=-1=>a=4"
Passing through the origin
"b^2=16\/7"
"\\dfrac{(x-1)^2}{16\/7}+\\dfrac{(y-3)^2}{16}=1"
b)
Center "(1, 1)"
Vertices "(3, 1)"
"\\dfrac{(x-h)^2}{a^2}+\\dfrac{(y-k)^2}{b^2}=1"Center "(h, k)"
Vertices "(h\\pm a, k)"
"h=1, k=1""1+a=3=>a=2"
Passing through the origin
"b^2=4\/3"
"\\dfrac{(x-1)^2}{4}+\\dfrac{(y-1)^2}{4\/3}=1"
Comments
Leave a comment