Solution.
1.1
a)
The planes are orthogonal when
"-\\lambda^2+5-4\\lambda=0"
"\\lambda^2+4\\lambda-5=0"
"\\lambda_1=1, \\lambda_2=-5"
b)
The planes are parallel when
"\\lambda\/-\\lambda=5=-2\\lambda\/2"
Such "\\lambda" does not exist, the planes can not be parallel.
b)
1.2
"N(3,-1,4)" normal vector.
An equation for the plane that passes through the origin (x0, y0, z0) and normal vector (A,B,C) is"A(x-x_0)+B(y-y_0)+C(z-z_0)=0."
Thus we will have
−x + 3y − 2z =0
1.3
"d=\\frac{|-3+2+2|}{\\sqrt{3^2+1+4^2}}\n\u200b\n =\\frac{1}{\n26}.\n\u200b"
Comments
Leave a comment