Question #217499
find the equation of cone whose vertex is(5, 4,3) and base curve 3x2+2y2=6, y+z=0.
1
Expert's answer
2021-07-15T04:29:02-0400

The vertex V(5,4,3)V(5,4,3). Let a,b,ca,b,c be the direction ratios of generator of the cone.

Then the equations of the generator are


x5a=y4b=z3c=t\frac{x-5}{a}=\frac{y-4}{b}=\frac{z-3}{c}=t

The coordinates of any points on the generator are (5+at,4+bt,3+ct)(5+at,4+bt,3+ct).

For some tR,(5+at,4+bt,3+ct)t\in \R, (5+at,4+bt,3+ct) lies on the guiding curve.

Therefore 3(5+at)2+2(4+bt)2=63(5+at)^2+2(4+bt)^2=6 and 4+bt+3+ct=04+bt+3+ct=0 .

Thus, t=7b+ct=-\dfrac{7}{b+c}.

From this we get


3(57ab+c)2+2(47bb+c)2=63(5-\dfrac{7a}{b+c})^2+2(4-\dfrac{7b}{b+c})^2=6

3(5b+5c7a)2+2(4b+4c7b)2=6(b+c)23(5b+5c-7a)^2+2(4b+4c-7b)^2=6(b+c)^2

75b2+75c2+147a2+150bc210ab210ac75b^2+75c^2+147a^2+150bc-210ab-210ac

+18b248bc+32c26b212bc6c2=0+18b^2-48bc+32c^2-6b^2-12bc-6c^2=0

147a2+87b2+101c2210ab210ac+90bc=0147a^2+87b^2+101c^2-210ab-210ac+90bc=0

147(x5)2+87(y4)2+101(z3)2147(x-5)^2+87(y-4)^2+101(z-3)^2

210(x5)(y4)210(x5)(z3)-210(x-5)(y-4)-210(x-5)(z-3)

+90(y4)(z3)=0+90(y-4)(z-3)=0

147x21470x+3675+87y2696y+1392147x^2-1470x+3675+87y^2-696y+1392

+101z2606z+909210xy+840x+1050y+101z^2-606z+909-210xy+840x+1050y

4200210xz+630x+1050z3150+90yz-4200-210xz+630x+1050z-3150+90yz

270y360z+1080=0-270y-360z+1080=0

The equation of cone is


147x2+87y2+101z2210xy210xz+90yz147x^2+87y^2+101z^2-210xy-210xz+90yz

+84y+84z294=0+84y+84z-294=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS