The vertex V(5,4,3). Let a,b,c be the direction ratios of generator of the cone.
Then the equations of the generator are
ax−5=by−4=cz−3=tThe coordinates of any points on the generator are (5+at,4+bt,3+ct).
For some t∈R,(5+at,4+bt,3+ct) lies on the guiding curve.
Therefore 3(5+at)2+2(4+bt)2=6 and 4+bt+3+ct=0 .
Thus, t=−b+c7.
From this we get
3(5−b+c7a)2+2(4−b+c7b)2=6
3(5b+5c−7a)2+2(4b+4c−7b)2=6(b+c)2
75b2+75c2+147a2+150bc−210ab−210ac
+18b2−48bc+32c2−6b2−12bc−6c2=0
147a2+87b2+101c2−210ab−210ac+90bc=0
147(x−5)2+87(y−4)2+101(z−3)2
−210(x−5)(y−4)−210(x−5)(z−3)
+90(y−4)(z−3)=0
147x2−1470x+3675+87y2−696y+1392
+101z2−606z+909−210xy+840x+1050y
−4200−210xz+630x+1050z−3150+90yz
−270y−360z+1080=0 The equation of cone is
147x2+87y2+101z2−210xy−210xz+90yz
+84y+84z−294=0
Comments