The vertex "V(5,4,3)". Let "a,b,c" be the direction ratios of generator of the cone.
Then the equations of the generator are
The coordinates of any points on the generator are "(5+at,4+bt,3+ct)".
For some "t\\in \\R, (5+at,4+bt,3+ct)" lies on the guiding curve.
Therefore "3(5+at)^2+2(4+bt)^2=6" and "4+bt+3+ct=0" .
Thus, "t=-\\dfrac{7}{b+c}".
From this we get
"3(5b+5c-7a)^2+2(4b+4c-7b)^2=6(b+c)^2"
"75b^2+75c^2+147a^2+150bc-210ab-210ac"
"+18b^2-48bc+32c^2-6b^2-12bc-6c^2=0"
"147a^2+87b^2+101c^2-210ab-210ac+90bc=0"
"147(x-5)^2+87(y-4)^2+101(z-3)^2"
"-210(x-5)(y-4)-210(x-5)(z-3)"
"+90(y-4)(z-3)=0"
"147x^2-1470x+3675+87y^2-696y+1392"
"+101z^2-606z+909-210xy+840x+1050y"
"-4200-210xz+630x+1050z-3150+90yz"
"-270y-360z+1080=0"
The equation of cone is
"+84y+84z-294=0"
Comments
Leave a comment