Find the value(s) of x such that the angle between the vectors (0, 1, −1) and (−1, x, 0) is 2π/3 . Show all your calculations
Solution
We know ,if x and y are two vectors ,the angle "\\theta" between them is given by;
Cos "\\theta" ="\\frac{(\\vec{x}.\\vec{y})}{\\Vert x\\Vert\\vert y\\Vert}"
Cos("\\frac{2\u03c0}{3}")=-"\\frac12"
"\\vec{x}.\\vec{y}" =0(-1)+x (1)+0(-1)=x
"\\Vert \\vec{x}\\Vert" ="\\sqrt{0^2+1^2+(-1)^2}" ="\\sqrt{2}"
"\\Vert\\vec{y}\\Vert" ="\\sqrt{(-1)^2+(x)^2+0^2}" ="\\sqrt{1+x^2}"
We now equate;
"-\\frac 12" ="\\frac{x}{\\sqrt{2(1+x^2)}}"
2(1+x2)=4x2
x2=1
x="\\sqrt{1}" =1 or -1
If x =1
Cos "\\theta" ="\\frac 12" "\\neq" Cos"(\\frac{2\u03c0}{3})"
Chose X=-1 that gives the cos"\\theta" as "-\\frac12"
Answer
x=-1
Comments
Leave a comment