Question #216650

Let L be the line given by (3,-1,2) + t (1,1,-1).Show that the above line L lies on the plane -2x + 3y -4z + 1 = 0


1
Expert's answer
2021-07-13T12:50:25-0400
<3,1,2>+t<1,1,1><3,−1,2>+t<1,1,−1>

x=3+t,y=1+t,z=2tx=3+t,y=−1+t, z=2−t

Show that the Line lies on the plane 


2(3+t)+3(1+t)4(2t)+1=0-2(3+t) + 3(-1+t) -4(2-t)+ 1 = 0

62t3+3t8+4t+1=0-6-2t-3+3t-8+4t+1=0

5t=165t=16


t=3.2t=3.2

x=6.2,y=2.2,z=1.2x=6.2,y=2.2,z=-1.2

Let t=0t=0


x=3,y=1,z=2x=3,y=-1,z=2

Check whether the point (3,1,2)(3, -1, 2) lies on the plane


2(3)+3(1)+4(2)+1=0,True-2(3)+3(-1)+4(2)+1=0, True

Therefore the line L lies on the plane -2x + 3y -4z + 1 = 0.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS