Determine whether the given line and the given plane are parallel :
a.) x = 1 + t, y=-1, z=-2t and x = 2y +3z - 9 =0,
b.) <0, 1, 2> +t <3,2,-1> and 4x - 2z +1 = 0
"(\\text a)\\\\(\\text a) x=1+t,\\ y=-1-t,\\ z=-2t, \\\\\\vec{a}=(1,-1,-2)\\\\\n(\\alpha) x+2y+3z-9=0, \\vec{n}=(1,2,3)\\\\\n\\vec{n}\\cdot\\vec{a}=1\\cdot1+(-1)\\cdot2+(-2)\\cdot3=-7\\neq 0"
Hence, we can say that the given line and the given plane are not parallel.
"(\\text b)\\\\(a) <0,1,2>\\ +t\\ <3,2,-1>, \\\\\\vec{a}=(3,2,-1)\\\\\n(\\alpha) 4x-y+2z+1=0, \\\\\\vec{n}=(4,-1,2)\\\\\n\\vec n\\cdot\\vec a=3\\cdot4+2\\cdot(-1)+(-1)\\cdot 2=8\\neq0"
Hence, we can say that the given line and the given plane are not parallel.
Comments
Leave a comment