2021-07-11T16:59:45-04:00
(2.1) Find the components of a unit vector satisfying ~v
1
2021-07-12T15:54:30-0400
v ⃗ ⋅ ⟨ 3 , − 1 ⟩ = 0 \vec v\cdot\langle3, -1\rangle=0 v ⋅ ⟨ 3 , − 1 ⟩ = 0
3 v 1 − v 2 = 0 = > v 2 = 3 v 1 3v_1-v_2=0=>v_2=3v_1 3 v 1 − v 2 = 0 => v 2 = 3 v 1
∣ v ⃗ ∣ = 1 = > v 1 2 + v 2 2 = 1 |\vec v|=1=>v_1^2+v_2^2=1 ∣ v ∣ = 1 => v 1 2 + v 2 2 = 1
v 1 2 + ( 3 v 1 ) 2 = 1 v_1^2+(3v_1)^2=1 v 1 2 + ( 3 v 1 ) 2 = 1
v 1 = ± 10 10 v_1=\pm\dfrac{\sqrt{10}}{10} v 1 = ± 10 10
v ⃗ = ⟨ − 10 10 , − 3 10 10 ⟩ \vec v=\langle-\dfrac{\sqrt{10}}{10}, -\dfrac{3\sqrt{10}}{10}\rangle v = ⟨ − 10 10 , − 10 3 10 ⟩ or
v ⃗ = ⟨ 10 10 , 3 10 10 ⟩ \vec v=\langle\dfrac{\sqrt{10}}{10}, \dfrac{3\sqrt{10}}{10}\rangle v = ⟨ 10 10 , 10 3 10 ⟩
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments