1) Since "\\vec{OA}=\\vec{BC}=\\vec{a}" and "\\vec{AC}=\\vec{OB}=\\vec{b}", OACB is a parallelogram, thus the angle ACO is equal to the angle COB. If "\\vec{a}+\\vec{b}" (i.e. "\\vec{OC}") bisect the angle between "\\vec{a}" and "\\vec{b}", then the triangle OAC is isosceles, "OA=AC". Thus, it must be "|\\vec{a}|=|\\vec{b}|".
2) If "\\vec{a}+\\vec{b}=\\vec{a}-\\vec{b}", then "\\vec{b}=-\\vec{b}" or "2\\vec{b}=\\vec{0}". Thus, in this case it must be "\\vec{b}=\\vec{0}".
Comments
Leave a comment