Given the conic section -3.6x2+1.6y2+72x+6.4y = 58/5
a) State the nature of the conic section
b) Find the characteristic elements of the conic section
c) Sketch the conic section indicating all the elements.
a)
"-3.6(x^2-20x+100)+360+1.6(y^2+4y+4)-6.4=11.6"
"3.6(x-10)^2-1.6(y+2)^2=342"
"\\dfrac{(x-10)^2}{95}-\\dfrac{(y+2)^2}{213.75}=1"
A conic is a hyperbola. Standard form
Horizontal hyperbola.
b)
"h=10, k=-2, a=\\sqrt{95}, b=\\sqrt{213.75}=1.5\\sqrt{95}""c^2=a^2+b^2=95+213.75=308.75, c=\\sqrt{308.75}"
Center: "(h, k)=(10,-2)"
Vertices: "(h\\pm a,k), (10-\\sqrt{95}, -2), (10+\\sqrt{95}, -2)"
Covertices: "(h, k\\pm b), (10, -2-1.5\\sqrt{95}), (10, -2+1.5\\sqrt{95})"
Foci: "(h\\pm c,k), (10-\\sqrt{308.75}, -2), (10+\\sqrt{308.75}, -2)"
The equations of the asymptotes are
"y=\\dfrac{b}{a}(x-h)+k,y=-\\dfrac{b}{a}(x-h)+k""y=1.5(x-10)-2,y=-1.5(x-10)-2"
"x=0,\\dfrac{(0-10)^2}{95}-\\dfrac{(y+2)^2}{213.75}=1"
"y=-2\\pm1.5\\sqrt{5}"
"(0, -2-1.5\\sqrt{5}), (0, -2+1.5\\sqrt{5})"
"y=0,\\dfrac{(x-10)^2}{95}-\\dfrac{(0+2)^2}{213.75}=1"
"x=10\\pm\\dfrac{\\sqrt{839}}{3}"
"(10-\\dfrac{\\sqrt{871}}{3},0), (10+\\dfrac{\\sqrt{871}}{3}, 0)"
c)
Comments
Leave a comment