a)
− 3.6 x 2 + 1.6 y 2 + 72 x + 6.4 y = 58 / 5 -3.6x^2+1.6y^2+72x+6.4y = 58/5 − 3.6 x 2 + 1.6 y 2 + 72 x + 6.4 y = 58/5
− 3.6 ( x 2 − 20 x + 100 ) + 360 + 1.6 ( y 2 + 4 y + 4 ) − 6.4 = 11.6 -3.6(x^2-20x+100)+360+1.6(y^2+4y+4)-6.4=11.6 − 3.6 ( x 2 − 20 x + 100 ) + 360 + 1.6 ( y 2 + 4 y + 4 ) − 6.4 = 11.6
3.6 ( x − 10 ) 2 − 1.6 ( y + 2 ) 2 = 342 3.6(x-10)^2-1.6(y+2)^2=342 3.6 ( x − 10 ) 2 − 1.6 ( y + 2 ) 2 = 342
( x − 10 ) 2 95 − ( y + 2 ) 2 213.75 = 1 \dfrac{(x-10)^2}{95}-\dfrac{(y+2)^2}{213.75}=1 95 ( x − 10 ) 2 − 213.75 ( y + 2 ) 2 = 1 A conic is a hyperbola. Standard form
( x − 10 ) 2 95 − ( y + 2 ) 2 213.75 = 1 \dfrac{(x-10)^2}{95}-\dfrac{(y+2)^2}{213.75}=1 95 ( x − 10 ) 2 − 213.75 ( y + 2 ) 2 = 1 Horizontal hyperbola.
b)
h = 10 , k = − 2 , a = 95 , b = 213.75 = 1.5 95 h=10, k=-2, a=\sqrt{95}, b=\sqrt{213.75}=1.5\sqrt{95} h = 10 , k = − 2 , a = 95 , b = 213.75 = 1.5 95
c 2 = a 2 + b 2 = 95 + 213.75 = 308.75 , c = 308.75 c^2=a^2+b^2=95+213.75=308.75, c=\sqrt{308.75} c 2 = a 2 + b 2 = 95 + 213.75 = 308.75 , c = 308.75 Center: ( h , k ) = ( 10 , − 2 ) (h, k)=(10,-2) ( h , k ) = ( 10 , − 2 )
Vertices: ( h ± a , k ) , ( 10 − 95 , − 2 ) , ( 10 + 95 , − 2 ) (h\pm a,k), (10-\sqrt{95}, -2), (10+\sqrt{95}, -2) ( h ± a , k ) , ( 10 − 95 , − 2 ) , ( 10 + 95 , − 2 )
Covertices: ( h , k ± b ) , ( 10 , − 2 − 1.5 95 ) , ( 10 , − 2 + 1.5 95 ) (h, k\pm b), (10, -2-1.5\sqrt{95}), (10, -2+1.5\sqrt{95}) ( h , k ± b ) , ( 10 , − 2 − 1.5 95 ) , ( 10 , − 2 + 1.5 95 )
Foci: ( h ± c , k ) , ( 10 − 308.75 , − 2 ) , ( 10 + 308.75 , − 2 ) (h\pm c,k), (10-\sqrt{308.75}, -2), (10+\sqrt{308.75}, -2) ( h ± c , k ) , ( 10 − 308.75 , − 2 ) , ( 10 + 308.75 , − 2 )
The equations of the asymptotes are
y = b a ( x − h ) + k , y = − b a ( x − h ) + k y=\dfrac{b}{a}(x-h)+k,y=-\dfrac{b}{a}(x-h)+k y = a b ( x − h ) + k , y = − a b ( x − h ) + k y = 1.5 ( x − 10 ) − 2 , y = − 1.5 ( x − 10 ) − 2 y=1.5(x-10)-2,y=-1.5(x-10)-2 y = 1.5 ( x − 10 ) − 2 , y = − 1.5 ( x − 10 ) − 2
x = 0 , ( 0 − 10 ) 2 95 − ( y + 2 ) 2 213.75 = 1 x=0,\dfrac{(0-10)^2}{95}-\dfrac{(y+2)^2}{213.75}=1 x = 0 , 95 ( 0 − 10 ) 2 − 213.75 ( y + 2 ) 2 = 1
( y + 2 ) 2 = 11.24 (y+2)^2=11.24 ( y + 2 ) 2 = 11.24
y = − 2 ± 1.5 5 y=-2\pm1.5\sqrt{5} y = − 2 ± 1.5 5
( 0 , − 2 − 1.5 5 ) , ( 0 , − 2 + 1.5 5 ) (0, -2-1.5\sqrt{5}), (0, -2+1.5\sqrt{5}) ( 0 , − 2 − 1.5 5 ) , ( 0 , − 2 + 1.5 5 )
y = 0 , ( x − 10 ) 2 95 − ( 0 + 2 ) 2 213.75 = 1 y=0,\dfrac{(x-10)^2}{95}-\dfrac{(0+2)^2}{213.75}=1 y = 0 , 95 ( x − 10 ) 2 − 213.75 ( 0 + 2 ) 2 = 1
( x − 10 ) 2 = 839 9 (x-10)^2=\dfrac{839}{9} ( x − 10 ) 2 = 9 839
x = 10 ± 839 3 x=10\pm\dfrac{\sqrt{839}}{3} x = 10 ± 3 839
( 10 − 871 3 , 0 ) , ( 10 + 871 3 , 0 ) (10-\dfrac{\sqrt{871}}{3},0), (10+\dfrac{\sqrt{871}}{3}, 0) ( 10 − 3 871 , 0 ) , ( 10 + 3 871 , 0 )
c)
Comments