(4.1) Consider the point A = (−1, 0, 1), B = (0, −2, 3), and C = (−4, 4, 1) to be vertices of a
triangle ∆. Evaluate all side lengths of ∆.
(4.2) Let ∆ be the triangle with vertices the points P = (3, 1, −1), Q = (2, 0, 3) and R = (1, 1, 1).
Determine whether ∆ is a right angle triangle. If it is not, explain with reason, why?
Solution.
"(4.1)A=(-1;0;1), B=(0;-2;3), C=(-4;4;1);"
"AB=\\sqrt{(0+1)^2+(-2-0)^2+(3-1)^2}=3;"
"BC=\\sqrt{(-4-0)^2+(4+2)^2+(1-3)^2}=\\sqrt{56}=2\\sqrt{14};"
"AC=\\sqrt{(-4+1)^2+(4-0)^2+(1-1)^2}=5;"
"(4.2) P=(3;1;-1), Q=(2;0;3), R=(1;1;1)"
"PQ=\\sqrt{(2-3)^2+(0-1)^2+(3+1)^2}=3\\sqrt{2};"
"QR=\\sqrt{(1-2)^2+(1-0)^2+(1-3)^2}=\\sqrt{6};"
"PR=\\sqrt{(1-3)^2+(1-1)^2+(1+1)^2}=2\\sqrt{2};"
"PQ^2=QR^2+PR^2;"
"18\\not =6+8; 18\\not=14," therefore, the triangle is not right-angled.
Answer: "(4.1) AB=3; BC=2\\sqrt{14}; AC=5;"
"(4.2)" A triangle is not right-angled because Pythagoras' theorem does not hold.
Comments
Leave a comment