Solution.
( 4.1 ) A = ( − 1 ; 0 ; 1 ) , B = ( 0 ; − 2 ; 3 ) , C = ( − 4 ; 4 ; 1 ) ; (4.1)A=(-1;0;1), B=(0;-2;3), C=(-4;4;1); ( 4.1 ) A = ( − 1 ; 0 ; 1 ) , B = ( 0 ; − 2 ; 3 ) , C = ( − 4 ; 4 ; 1 ) ;
A B = ( 0 + 1 ) 2 + ( − 2 − 0 ) 2 + ( 3 − 1 ) 2 = 3 ; AB=\sqrt{(0+1)^2+(-2-0)^2+(3-1)^2}=3; A B = ( 0 + 1 ) 2 + ( − 2 − 0 ) 2 + ( 3 − 1 ) 2 = 3 ;
B C = ( − 4 − 0 ) 2 + ( 4 + 2 ) 2 + ( 1 − 3 ) 2 = 56 = 2 14 ; BC=\sqrt{(-4-0)^2+(4+2)^2+(1-3)^2}=\sqrt{56}=2\sqrt{14}; BC = ( − 4 − 0 ) 2 + ( 4 + 2 ) 2 + ( 1 − 3 ) 2 = 56 = 2 14 ;
A C = ( − 4 + 1 ) 2 + ( 4 − 0 ) 2 + ( 1 − 1 ) 2 = 5 ; AC=\sqrt{(-4+1)^2+(4-0)^2+(1-1)^2}=5; A C = ( − 4 + 1 ) 2 + ( 4 − 0 ) 2 + ( 1 − 1 ) 2 = 5 ;
( 4.2 ) P = ( 3 ; 1 ; − 1 ) , Q = ( 2 ; 0 ; 3 ) , R = ( 1 ; 1 ; 1 ) (4.2) P=(3;1;-1), Q=(2;0;3), R=(1;1;1) ( 4.2 ) P = ( 3 ; 1 ; − 1 ) , Q = ( 2 ; 0 ; 3 ) , R = ( 1 ; 1 ; 1 )
P Q = ( 2 − 3 ) 2 + ( 0 − 1 ) 2 + ( 3 + 1 ) 2 = 3 2 ; PQ=\sqrt{(2-3)^2+(0-1)^2+(3+1)^2}=3\sqrt{2}; PQ = ( 2 − 3 ) 2 + ( 0 − 1 ) 2 + ( 3 + 1 ) 2 = 3 2 ;
Q R = ( 1 − 2 ) 2 + ( 1 − 0 ) 2 + ( 1 − 3 ) 2 = 6 ; QR=\sqrt{(1-2)^2+(1-0)^2+(1-3)^2}=\sqrt{6}; QR = ( 1 − 2 ) 2 + ( 1 − 0 ) 2 + ( 1 − 3 ) 2 = 6 ;
P R = ( 1 − 3 ) 2 + ( 1 − 1 ) 2 + ( 1 + 1 ) 2 = 2 2 ; PR=\sqrt{(1-3)^2+(1-1)^2+(1+1)^2}=2\sqrt{2}; PR = ( 1 − 3 ) 2 + ( 1 − 1 ) 2 + ( 1 + 1 ) 2 = 2 2 ;
P Q 2 = Q R 2 + P R 2 ; PQ^2=QR^2+PR^2; P Q 2 = Q R 2 + P R 2 ;
18 ≠ 6 + 8 ; 18 ≠ 14 , 18\not =6+8; 18\not=14, 18 = 6 + 8 ; 18 = 14 , therefore, the triangle is not right-angled.
Answer: ( 4.1 ) A B = 3 ; B C = 2 14 ; A C = 5 ; (4.1) AB=3; BC=2\sqrt{14}; AC=5; ( 4.1 ) A B = 3 ; BC = 2 14 ; A C = 5 ;
( 4.2 ) (4.2) ( 4.2 ) A triangle is not right-angled because Pythagoras' theorem does not hold.
Comments