(3.1) Find an expression for 1
2
||~u + ~v||2 +
1
2
||~u − ~v||2
in terms of ||~u||2 + ||~v||2
.
(3.2) Find an expression for ||~u + ~v|| 2 − ||~u − ~v||2
in terms of ~u · ~v
(3.3) Use the result of (3.2) to deduce an expression for ||~u + ~v||2 whenever ~u and ~v are orthogonal
to each other.
(3.1)
"=(\\vec u, \\vec u)+2(\\vec u, \\vec v)+(\\vec v, \\vec v)"
"=||\\vec u||^2+2(\\vec u, \\vec v)+||\\vec v||^2"
"=(\\vec u, \\vec u)-2(\\vec u, \\vec v)+(\\vec v, \\vec v)"
"=||\\vec u||^2-2(\\vec u, \\vec v)+||\\vec v||^2"
"=\\dfrac{1}{2}(||\\vec u||^2+2(\\vec u, \\vec v)+||\\vec v||^2)+\\dfrac{1}{2}(||\\vec u||^2-2(\\vec u, \\vec v)+||\\vec v||^2)"
"=||\\vec u||^2+||\\vec v||^2"
(3.2)
"=||\\vec u||^2+2(\\vec u, \\vec v)+||\\vec v||^2-(||\\vec u||^2-2(\\vec u, \\vec v)+||\\vec v||^2)"
"=4(\\vec u, \\vec v)"
(3.3)
If "\\vec u \\perp \\vec v," then "(\\vec u, \\vec v)=0"
Comments
Leave a comment