Determine proj~a
~u the orthogonal projection of ~u and ~a and deduce ||proj~a
~u|| for
(2.1) ~u =< −1, 3 >, ~a =< −1, −3 >;
(2.2) ~u =< −2, 1, −3 >, ~a =< −2, 1, 2 >.
(2.1)
"\\vec u\\cdot\\vec a=-1(-1)+3(-3)=-8"
"|\\vec a|^2=(-1)^2+(-3)^2=10"
"proj_{\\vec a}\\vec u=\\dfrac{\\vec u\\cdot\\vec a}{|\\vec a|^2}\\vec a=\\dfrac{-8}{10}\\langle-1,-3\\rangle"
"=\\langle0.8,-0.3\\rangle"
(2.2)
"\\vec u\\cdot\\vec a=-2(-2)+1(1)-3(2)=-1"
"|\\vec a|^2=(-2)^2+(1)^2+(2)^2=9"
"proj_{\\vec a}\\vec u=\\dfrac{\\vec u\\cdot\\vec a}{|\\vec a|^2}\\vec a=\\dfrac{-1}{9}\\langle-2,1,2\\rangle"
"=\\langle\\dfrac{2}{9},-\\dfrac{1}{9},-\\dfrac{2}{9}\\rangle""|proj_{\\vec a}\\vec u|=\\sqrt{(\\dfrac{2}{9})^2+(-\\dfrac{1}{9})^2+(-\\dfrac{2}{9})^2}=\\dfrac{1}{3}"
Comments
This question it really tricky for me, thanks for sharing your answers, I'll try to master it.
Leave a comment