Answer to Question #209431 in Analytic Geometry for Tshego

Question #209431

Let u=<-2,1,-1, V =< - 3,2 - 1> and w=<1,3,5>. Compute :

a.) u x w,

b.) u x (w x v) and (u x w) x v.


1
Expert's answer
2021-06-25T07:23:00-0400

Let u=<2,1,1>,v=<3,2,1>,w=<1,3,5>u=<-2,1,-1>, v=<-3,2,-1>, w=<1,3,5>.

Compute:

a) u×w=ijk211135=i(15(1)3)j((2)5(1)1)+k((2)311)=i(5+3)j(10+1)+k(61)=<8;9;7>u\times w= \begin{vmatrix} i &j &k \\ -2&1&-1\\ 1&3&5 \end{vmatrix}=i (1·5 - (-1)·3) - j ((-2)·5 - (-1)·1) + k ((-2)·3 - 1·1) = i (5 + 3) - j (-10 + 1) + k (-6 - 1) = <8; 9; -7>

b)

u×(w×v)=ijk135321=i(3(1)52)j(1(1)5(3))+k(123(3))=i(310)j(1+15)+k(2+9)=u\times (w\times v)=\begin{vmatrix} i&j&k \\ 1&3&5\\ -3&2&-1 \end{vmatrix}=i (3·(-1) - 5·2) - j (1·(-1) - 5·(-3)) + k (1·2 - 3·(-3)) = i (-3 - 10) - j (-1 + 15) + k (2 + 9) =

=ijk211131411=i(111(1)(14))j((2)11(1)(13))+k((2)(14)1(13))=i(1114)j(2213)+k(28+13)=<3;35;41>=\begin{vmatrix} i&j&k \\ -2&1&-1\\ -13&-14&11 \end{vmatrix}= i (1·11 - (-1)·(-14)) - j ((-2)·11 - (-1)·(-13)) + k ((-2)·(-14) - 1·(-13)) = i (11 - 14) - j (-22 - 13) + k (28 + 13)= <-3; 35; 41>

(u×w)×v=ijk211135=i(15(1)3)j((2)5(1)1)+k((2)311)=i(5+3)j(10+1)+k(61)=ijk897321=i(9(1)(7)2)j(8(1)(7)(3))+k(829(3))=i(9+14)j(821)+k(16+27)=<5;29;43>.(u×w)×v=\begin{vmatrix} i&j&k \\ -2&1&-1\\ 1&3&5 \end{vmatrix}=i (1·5 - (-1)·3) - j ((-2)·5 - (-1)·1) + k ((-2)·3 - 1·1) = i (5 + 3) - j (-10 + 1) + k (-6 - 1) = \begin{vmatrix} i&j&k\\ 8&9&-7\\ -3&2&-1 \end{vmatrix}=i (9·(-1) - (-7)·2) - j (8·(-1) - (-7)·(-3)) + k (8·2 - 9·(-3)) = i (-9 + 14) - j (-8 - 21) + k (16 + 27) = <5; 29; 43>.





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment