Let u=<-2,1,-1, V =< - 3,2 - 1> and w=<1,3,5>. Compute :
a.) u x w,
b.) u x (w x v) and (u x w) x v.
Let "u=<-2,1,-1>, v=<-3,2,-1>, w=<1,3,5>".
Compute:
a) "u\\times w=\n \\begin{vmatrix}\n i &j &k \\\\\n -2&1&-1\\\\\n1&3&5\n\\end{vmatrix}=i (1\u00b75 - (-1)\u00b73) - j ((-2)\u00b75 - (-1)\u00b71) + k ((-2)\u00b73 - 1\u00b71) \n\n = i (5 + 3) - j (-10 + 1) + k (-6 - 1) = <8; 9; -7>"
b)
"u\\times (w\\times v)=\\begin{vmatrix}\n i&j&k \\\\\n 1&3&5\\\\\n-3&2&-1\n\\end{vmatrix}=i (3\u00b7(-1) - 5\u00b72) - j (1\u00b7(-1) - 5\u00b7(-3)) + k (1\u00b72 - 3\u00b7(-3)) \n\n = i (-3 - 10) - j (-1 + 15) + k (2 + 9) ="
"=\\begin{vmatrix}\n i&j&k \\\\\n -2&1&-1\\\\\n-13&-14&11\n\\end{vmatrix}= i (1\u00b711 - (-1)\u00b7(-14)) - j ((-2)\u00b711 - (-1)\u00b7(-13)) + k ((-2)\u00b7(-14) - 1\u00b7(-13)) \n\n = i (11 - 14) - j (-22 - 13) + k (28 + 13)= <-3; 35; 41>"
"(u\u00d7w)\u00d7v=\\begin{vmatrix}\n i&j&k \\\\\n -2&1&-1\\\\\n1&3&5\n\\end{vmatrix}=i (1\u00b75 - (-1)\u00b73) - j ((-2)\u00b75 - (-1)\u00b71) + k ((-2)\u00b73 - 1\u00b71) \n\n = i (5 + 3) - j (-10 + 1) + k (-6 - 1) =\n\\begin{vmatrix}\n i&j&k\\\\\n 8&9&-7\\\\\n-3&2&-1\n\\end{vmatrix}=i (9\u00b7(-1) - (-7)\u00b72) - j (8\u00b7(-1) - (-7)\u00b7(-3)) + k (8\u00b72 - 9\u00b7(-3)) \n\n = i (-9 + 14) - j (-8 - 21) + k (16 + 27) = <5; 29; 43>."
Comments
Leave a comment