Consider the vectors u=<-2,2, - 3>, v=<-1,3, - 4>, w=2, - 6,2> and the points A (2,6,-1) and B(-3, - 5,7). Evaluate
a.) The distance between the two points
b.) ||2u - 3v + 1/2w||
c.) The unit vector in the direction of w.
d.) Suppose u; v and w are vectors in 3D,where u=(u1, u2, u3) ; v = (v1, v2, v3) and w=(w1, w2, w3).
Express (u x v). W as a determinant.
Consider the vectors "u=(-2,2, - 3)", "v=(-1,3, - 4), w=(2, - 6,2)" and the points "A (2,6,-1)" and "B(-3, - 5,7)".
a) The distance between the two points is equal to "\\sqrt{(-3-2)^2+(-5-6)^2+(7-(-1))^2}=\\sqrt{25+121+64}=\\sqrt{210}\\approx14.49"
b.) "||2u - 3v + \\frac{1}{2}w|| =||2(-2,2,-3)-3(-1,3,-4)+\\frac{1}{2}(2,-6,2)||=||(0,-8,7)||=\\sqrt{(-8)^2+7^2}=\\sqrt{113}\\approx 10.63"
с) The unit vector in the direction of "w" is "\\frac{w}{||w||}=\\frac{(2,-6,2)}{\\sqrt{4+36+4}}=\\frac{(2,-6,2)}{\\sqrt{44}}=\\frac{2(1,-3,1)}{2\\sqrt{11}}=(\\frac{1}{\\sqrt{11}},-\\frac{3}{\\sqrt{11}},\\frac{1}{\\sqrt{11}})."
d.) Suppose "u, v" and "w" are vectors in 3D, where "u=(u_1, u_2, u_3),\\ v = (v_1, v_2, v_3)" and "w=(w_1, w_2, w_3)".
"(u \\times v)\\cdot w=(u_2v_3-v_2u_3,v_1u_3-u_1v_3,u_1v_2-v_1u_2)\\cdot(w_1,w_2,w_3)=(u_2v_3-v_2u_3)w_1+(v_1u_3-u_1v_3)w_2+(u_1v_2-v_1u_2)w_3=\\begin{vmatrix}u_1 & u_ 2 & u_3 \\\\ v_1 & v_2 & v_3 \\\\ w_1 & w_2 & w_3\\end{vmatrix}."
Comments
Leave a comment