Consider the vectors u=(−2,2,−3), v=(−1,3,−4),w=(2,−6,2) and the points A(2,6,−1) and B(−3,−5,7).
a) The distance between the two points is equal to (−3−2)2+(−5−6)2+(7−(−1))2=25+121+64=210≈14.49
b.) ∣∣2u−3v+21w∣∣=∣∣2(−2,2,−3)−3(−1,3,−4)+21(2,−6,2)∣∣=∣∣(0,−8,7)∣∣=(−8)2+72=113≈10.63
с) The unit vector in the direction of w is ∣∣w∣∣w=4+36+4(2,−6,2)=44(2,−6,2)=2112(1,−3,1)=(111,−113,111).
d.) Suppose u,v and w are vectors in 3D, where u=(u1,u2,u3), v=(v1,v2,v3) and w=(w1,w2,w3).
(u×v)⋅w=(u2v3−v2u3,v1u3−u1v3,u1v2−v1u2)⋅(w1,w2,w3)=(u2v3−v2u3)w1+(v1u3−u1v3)w2+(u1v2−v1u2)w3=∣∣u1v1w1u2v2w2u3v3w3∣∣.
Comments