We assume given a plane u passing by the tip of the vectors u=<-1,1,2, v=<2, - 1,0> and w=<1, 1, 3.
a.) Find the dot products u.v and w.v
b.) Determine whether or not there is a vector n that is perpendicular to u. If yes, then find the vector n. Otherwise explain why such a vector does not exist?
a)
"\\vec w\\cdot \\vec v=1(2)+1(-1)+3(0)=1"
b)
"=\\vec i\\begin{vmatrix}\n 1 & 2 \\\\\n -1 & 0\n\\end{vmatrix}-\\vec j\\begin{vmatrix}\n -1 & 2 \\\\\n 2 & 0\n\\end{vmatrix}+\\vec k\\begin{vmatrix}\n -1 & 1 \\\\\n 2 & -1\n\\end{vmatrix}"
"=-2\\vec i+4\\vec j-\\vec k"
The vector "\\vec n=-2\\vec i+4\\vec j-\\vec k" is perpendicular to the vector "\\vec u."
Find the equation of the plane "U"
"(x+1)\\begin{vmatrix}\n -2 & -2 \\\\\n 0 & 1\n\\end{vmatrix}-(y-1)\\begin{vmatrix}\n 3 & -2 \\\\\n 2 & 1\n\\end{vmatrix}+(z-2)\\begin{vmatrix}\n 3 & -2 \\\\\n 2 & 0\n\\end{vmatrix}=0"
"-2x-2-7y+7+4z-8=0"
"2x+7y-4z+3=0"
The vector "\\vec n=2\\vec i+7\\vec j-4\\vec k" is perpendicular to the plane "U."
Comments
Leave a comment