Question #206627

We assume given a plane u passing by the tip of the vectors u=<-1,1,2, v=<2, - 1,0> and w=<1, 1, 3.

a.) Find the dot products u.v and w.v

b.) Determine whether or not there is a vector n that is perpendicular to u. If yes, then find the vector n. Otherwise explain why such a vector does not exist?


1
Expert's answer
2021-06-14T15:37:43-0400

a)


u⃗⋅v⃗=−1(2)+1(−1)+2(0)=−3\vec u\cdot \vec v=-1(2)+1(-1)+2(0)=-3

w⃗⋅v⃗=1(2)+1(−1)+3(0)=1\vec w\cdot \vec v=1(2)+1(-1)+3(0)=1

b)


u⃗×v⃗=∣i⃗j⃗k⃗−1122−10∣\vec u\times \vec v=\begin{vmatrix} \vec i & \vec j & \vec k \\ -1 & 1 & 2 \\ 2 & -1 & 0 \end{vmatrix}

=i⃗∣12−10∣−j⃗∣−1220∣+k⃗∣−112−1∣=\vec i\begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix}-\vec j\begin{vmatrix} -1 & 2 \\ 2 & 0 \end{vmatrix}+\vec k\begin{vmatrix} -1 & 1 \\ 2 & -1 \end{vmatrix}

=−2i⃗+4j⃗−k⃗=-2\vec i+4\vec j-\vec k

The vector n⃗=−2i⃗+4j⃗−k⃗\vec n=-2\vec i+4\vec j-\vec k is perpendicular to the vector u⃗.\vec u.


Find the equation of the plane UU


∣x−(−1)y−1z−22−(−1)−1−10−21−(−1)1−13−2∣=0\begin{vmatrix} x-(-1) & y-1 & z-2 \\ 2-(-1) & -1-1 & 0-2 \\ 1-(-1) & 1-1 & 3-2 \\ \end{vmatrix}=0

(x+1)∣−2−201∣−(y−1)∣3−221∣+(z−2)∣3−220∣=0(x+1)\begin{vmatrix} -2 & -2 \\ 0 & 1 \end{vmatrix}-(y-1)\begin{vmatrix} 3 & -2 \\ 2 & 1 \end{vmatrix}+(z-2)\begin{vmatrix} 3 & -2 \\ 2 & 0 \end{vmatrix}=0

−2x−2−7y+7+4z−8=0-2x-2-7y+7+4z-8=0

2x+7y−4z+3=02x+7y-4z+3=0

The vector n⃗=2i⃗+7j⃗−4k⃗\vec n=2\vec i+7\vec j-4\vec k is perpendicular to the plane U.U.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS