Assume two vectors u ⃗ = x i ^ + y j ^ + z k ^ , v ⃗ = a i ^ + b j ^ + c k ^ \vec u=x \hat i+y\hat j+z\hat k, \vec v=a \hat i+b\hat j+c\hat k u = x i ^ + y j ^ + z k ^ , v = a i ^ + b j ^ + c k ^ .
Now, u ⃗ . v ⃗ = ( x i ^ + y j ^ + z k ^ ) . ( a i ^ + b j ^ + c k ^ ) \vec u.\vec v=(x \hat i+y\hat j+z\hat k).(a \hat i+b\hat j+c\hat k) u . v = ( x i ^ + y j ^ + z k ^ ) . ( a i ^ + b j ^ + c k ^ ) = x a + y b + z c =xa+yb+zc = x a + y b + zc ...(i)
And v ⃗ . w ⃗ = ( a i ^ + b j ^ + c k ^ ) . ( x i ^ + y j ^ + z k ^ ) \vec v.\vec w=(a \hat i+b\hat j+c\hat k).(x \hat i+y\hat j+z\hat k) v . w = ( a i ^ + b j ^ + c k ^ ) . ( x i ^ + y j ^ + z k ^ ) = a x + b y + c z =ax+by+cz = a x + b y + cz ...(ii)
From (i) and (ii), u ⃗ . v ⃗ = v ⃗ . u ⃗ \vec u.\vec v=\vec v.\vec u u . v = v . u
Hence, commutative.
Also, assume another vector w ⃗ = p i ^ + q j ^ + r k ^ \vec w=p \hat i+q\hat j+r\hat k w = p i ^ + q j ^ + r k ^
( u ⃗ . v ⃗ ) . w ⃗ = [ ( x i ^ + y j ^ + z k ^ ) . ( a i ^ + b j ^ + c k ^ ) ] . ( p i ^ + q j ^ + r k ^ ) = [ x a + y b + z c ] . ( p i ^ + q j ^ + r k ^ ) (\vec u.\vec v).\vec w=[(x \hat i+y\hat j+z\hat k).(a \hat i+b\hat j+c\hat k)].(p \hat i+q\hat j+r\hat k)
\\=[xa+yb+zc].(p \hat i+q\hat j+r\hat k) ( u . v ) . w = [( x i ^ + y j ^ + z k ^ ) . ( a i ^ + b j ^ + c k ^ )] . ( p i ^ + q j ^ + r k ^ ) = [ x a + y b + zc ] . ( p i ^ + q j ^ + r k ^ )
which is not defined as dot product of a scalar and vector quantity is not defined.
Now,
u ⃗ . ( v ⃗ . w ⃗ ) = ( x i ^ + y j ^ + z k ^ ) . [ ( a i ^ + b j ^ + c k ^ ) . ( p i ^ + q j ^ + r k ^ ) ] = ( x i ^ + y j ^ + z k ^ ) . ( a p + b q + c r ) \vec u.(\vec v.\vec w)=(x \hat i+y\hat j+z\hat k).[(a \hat i+b\hat j+c\hat k).(p \hat i+q\hat j+r\hat k)]
\\=(x \hat i+y\hat j+z\hat k).(ap+bq+cr) u . ( v . w ) = ( x i ^ + y j ^ + z k ^ ) . [( a i ^ + b j ^ + c k ^ ) . ( p i ^ + q j ^ + r k ^ )] = ( x i ^ + y j ^ + z k ^ ) . ( a p + b q + cr )
which is not defined as dot product of a scalar and vector quantity is not defined.
Hence, not associative.
Comments