Prove that the dot product between two vectors is commutative and not associative
Assume two vectors "\\vec u=x \\hat i+y\\hat j+z\\hat k, \\vec v=a \\hat i+b\\hat j+c\\hat k" .
Now, "\\vec u.\\vec v=(x \\hat i+y\\hat j+z\\hat k).(a \\hat i+b\\hat j+c\\hat k)""=xa+yb+zc" ...(i)
And "\\vec v.\\vec w=(a \\hat i+b\\hat j+c\\hat k).(x \\hat i+y\\hat j+z\\hat k)""=ax+by+cz" ...(ii)
From (i) and (ii), "\\vec u.\\vec v=\\vec v.\\vec u"
Hence, commutative.
Also, assume another vector "\\vec w=p \\hat i+q\\hat j+r\\hat k"
"(\\vec u.\\vec v).\\vec w=[(x \\hat i+y\\hat j+z\\hat k).(a \\hat i+b\\hat j+c\\hat k)].(p \\hat i+q\\hat j+r\\hat k)\n\\\\=[xa+yb+zc].(p \\hat i+q\\hat j+r\\hat k)"
which is not defined as dot product of a scalar and vector quantity is not defined.
Now,
"\\vec u.(\\vec v.\\vec w)=(x \\hat i+y\\hat j+z\\hat k).[(a \\hat i+b\\hat j+c\\hat k).(p \\hat i+q\\hat j+r\\hat k)]\n\\\\=(x \\hat i+y\\hat j+z\\hat k).(ap+bq+cr)"
which is not defined as dot product of a scalar and vector quantity is not defined.
Hence, not associative.
Comments
Leave a comment