Find the co-ordinate of the centre of the circle and it radius if it equation is
1. x^2 +y^2 -10x-12y+6=0
2. -2X^2-2y^2-18y +9=0
1.
x2+y2−10x−12y+6=0.x^2+y^2-10x-12y+6=0.x2+y2−10x−12y+6=0.
(x−5)2+(y−6)2−25−36+6=0.(x-5)^2+(y-6)^2-25-36+6=0.(x−5)2+(y−6)2−25−36+6=0.
(x−5)2+(y−6)2=55.(x-5)^2+(y-6)^2=55.(x−5)2+(y−6)2=55.
Center: (5,6).(5,6).(5,6).
Radius: r=55.r=\sqrt{55}.r=55.
2.
−2x2−2y2−18y+9=0.-2x^2-2y^2-18y+9=0.−2x2−2y2−18y+9=0.
x2+y2+9y−92=0.x^2+y^2+9y-\frac{9}{2}=0.x2+y2+9y−29=0.
x2+(y+92)2−814−92=0.x^2+(y+\frac{9}{2})^2-\frac{81}{4}-\frac{9}{2}=0.x2+(y+29)2−481−29=0.
x2+(y+92)2=994.x^2+(y+\frac{9}{2})^2=\frac{99}{4}.x2+(y+29)2=499.
Center: (0,−92).(0,-\frac{9}{2}).(0,−29).
Radius: r=3112.r=\frac{3\sqrt{11}}{2}.r=2311.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments