Question #207083

find the coordinates of the centre of a circle and its radius if the equation is 1) x2+y2-10x-12y+6=0

2) -2x2-2y2-18y+9=0


1
Expert's answer
2021-06-15T18:00:59-0400

(1)

x2+y210x12y+6=0x^2+y^2-10x-12y+6=0

Now by completing the squares

x210x+(102)2+y212y+(122)2+6=(102)2+(122)2    (x210x+25)+(y212y+36)=2+366    (x5)2+(y6)2=55..........................(1)x^2-10x+(\frac{10}{2})^2+y^2-12y+(\frac{12}{2})^2+6=(\frac{10}{2})^2+(\frac{12}{2})^2\\\implies(x^2-10x+25)+(y^2-12y+36)=2+36-6\\\implies(x-5)^2+(y-6)^2=55..........................(1)

standard form of the circle is

(xh)2+(yk)2=r2...................................(2)(x-h)^2+(y-k)^2=r^2...................................(2)

where (h,k)is the center and r is radius of the circle by comparing ed. (1) and (2)

we get,

centre(h,k)=(5,6)

Radiusr=55Radius r=\sqrt{55}


(2)

2x22y218y+9=0    2(x2+y2+9y92)=0    x2+y2+9y92=0-2x^2-2y^2-18y+9=0\\\implies-2(x^2+y^2+9y-\frac{9}{2})=0\\\implies x^2+y^2 +9y-\frac{9}{2}=0

by completing squares,

x2+y2+9y+(92)2=92+(92)2    x2+y2+9y+814=92+814    x2+(y+92)2=18+814    (x0)2+(y+(92))2=994x^2+y^2+9y+(\frac{9}{2})^2=\frac{9}{2}+(\frac{9}{2})^2\\\implies x^2 +y^2+9y+\frac{81}{4}=\frac{9}{2}+\frac{81}{4}\\\implies x^2+(y+\frac{9}{2})^2=\frac{18+81}{4}\\\implies(x-0)^2+(y+(-\frac{9}{2}))^2=\frac{99}{4}


By comparing from standard form of circle we get,

centre (h,k) =(0,92)(0,\frac{-9}{2})


Radius r=994=3411r=\sqrt{\frac{99}{4}}=\frac{3}{4}\sqrt11


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS