(1)
x 2 + y 2 − 10 x − 12 y + 6 = 0 x^2+y^2-10x-12y+6=0 x 2 + y 2 − 10 x − 12 y + 6 = 0
Now by completing the squares
x 2 − 10 x + ( 10 2 ) 2 + y 2 − 12 y + ( 12 2 ) 2 + 6 = ( 10 2 ) 2 + ( 12 2 ) 2 ⟹ ( x 2 − 10 x + 25 ) + ( y 2 − 12 y + 36 ) = 2 + 36 − 6 ⟹ ( x − 5 ) 2 + ( y − 6 ) 2 = 55.......................... ( 1 ) x^2-10x+(\frac{10}{2})^2+y^2-12y+(\frac{12}{2})^2+6=(\frac{10}{2})^2+(\frac{12}{2})^2\\\implies(x^2-10x+25)+(y^2-12y+36)=2+36-6\\\implies(x-5)^2+(y-6)^2=55..........................(1) x 2 − 10 x + ( 2 10 ) 2 + y 2 − 12 y + ( 2 12 ) 2 + 6 = ( 2 10 ) 2 + ( 2 12 ) 2 ⟹ ( x 2 − 10 x + 25 ) + ( y 2 − 12 y + 36 ) = 2 + 36 − 6 ⟹ ( x − 5 ) 2 + ( y − 6 ) 2 = 55.......................... ( 1 )
standard form of the circle is
( x − h ) 2 + ( y − k ) 2 = r 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) (x-h)^2+(y-k)^2=r^2...................................(2) ( x − h ) 2 + ( y − k ) 2 = r 2 ................................... ( 2 )
where (h,k)is the center and r is radius of the circle by comparing ed. (1) and (2)
we get,
centre(h,k)=(5,6)
R a d i u s r = 55 Radius r=\sqrt{55} R a d i u sr = 55
(2)
− 2 x 2 − 2 y 2 − 18 y + 9 = 0 ⟹ − 2 ( x 2 + y 2 + 9 y − 9 2 ) = 0 ⟹ x 2 + y 2 + 9 y − 9 2 = 0 -2x^2-2y^2-18y+9=0\\\implies-2(x^2+y^2+9y-\frac{9}{2})=0\\\implies x^2+y^2 +9y-\frac{9}{2}=0 − 2 x 2 − 2 y 2 − 18 y + 9 = 0 ⟹ − 2 ( x 2 + y 2 + 9 y − 2 9 ) = 0 ⟹ x 2 + y 2 + 9 y − 2 9 = 0
by completing squares,
x 2 + y 2 + 9 y + ( 9 2 ) 2 = 9 2 + ( 9 2 ) 2 ⟹ x 2 + y 2 + 9 y + 81 4 = 9 2 + 81 4 ⟹ x 2 + ( y + 9 2 ) 2 = 18 + 81 4 ⟹ ( x − 0 ) 2 + ( y + ( − 9 2 ) ) 2 = 99 4 x^2+y^2+9y+(\frac{9}{2})^2=\frac{9}{2}+(\frac{9}{2})^2\\\implies x^2 +y^2+9y+\frac{81}{4}=\frac{9}{2}+\frac{81}{4}\\\implies x^2+(y+\frac{9}{2})^2=\frac{18+81}{4}\\\implies(x-0)^2+(y+(-\frac{9}{2}))^2=\frac{99}{4} x 2 + y 2 + 9 y + ( 2 9 ) 2 = 2 9 + ( 2 9 ) 2 ⟹ x 2 + y 2 + 9 y + 4 81 = 2 9 + 4 81 ⟹ x 2 + ( y + 2 9 ) 2 = 4 18 + 81 ⟹ ( x − 0 ) 2 + ( y + ( − 2 9 ) ) 2 = 4 99
By comparing from standard form of circle we get,
centre (h,k) =( 0 , − 9 2 ) (0,\frac{-9}{2}) ( 0 , 2 − 9 )
Radius r = 99 4 = 3 4 1 1 r=\sqrt{\frac{99}{4}}=\frac{3}{4}\sqrt11 r = 4 99 = 4 3 1 1
Comments