1.u=<1,3,-2>; v=<-5,3,2>
The vectors are
u = i + 3j - 2k
v = -5i +3j + 2k
cos θ \cos \theta cos θ = u . v ∣ u ∣ ∣ v ∣ \dfrac{u.v}{|u||v|} ∣ u ∣∣ v ∣ u . v
cosθ = ( i + 3 j − 2 k ) . ( − 5 i + 3 j + 2 k ) 14 ∗ 38 \dfrac{(i + 3j - 2k ) . (-5i +3j + 2k) }{\sqrt{14}*\sqrt{38}} 14 ∗ 38 ( i + 3 j − 2 k ) . ( − 5 i + 3 j + 2 k )
cosθ = -− 5 + 9 − 4 14 ∗ 38 \dfrac{- 5 + 9 - 4}{\sqrt{14}*\sqrt{38}} 14 ∗ 38 − 5 + 9 − 4 = 0
θ \theta θ = π 2 \dfrac{\pi}{2} 2 π
Hence the vectors u and v are orthogonal to each other.
2.u=<1,-2,4>; v=<5,3,7>
The vectors are
u = i - 2j + 4k
v = 5i +3j + 7k
cos θ \cos \theta cos θ = u . v ∣ u ∣ ∣ v ∣ \dfrac{u.v}{|u||v|} ∣ u ∣∣ v ∣ u . v
cosθ = ( i − 2 j + 4 k ) . ( 5 i + 3 j + 7 k ) 21 ∗ 83 \dfrac{(i - 2j + 4k ) . (5i +3j + 7k) }{\sqrt{21}*\sqrt{83}} 21 ∗ 83 ( i − 2 j + 4 k ) . ( 5 i + 3 j + 7 k )
cosθ = 5 − 6 + 28 21 ∗ 83 \dfrac{5 - 6 + 28}{\sqrt{21}*\sqrt{83}} 21 ∗ 83 5 − 6 + 28
cos θ \cos \theta cos θ = 27 21 ∗ 83 \dfrac{27}{\sqrt{21}*\sqrt{83}} 21 ∗ 83 27
cos θ \cos\theta cos θ = 0.647
θ \theta θ = 49.68 ° 49.68\degree 49.68°
Since, θ \theta θ < 90 ° \degree ° so u and v make the acute angle with each other.
Comments