Determine whether u and v are orthogonal vectors,make an acute or obtuse angle:
1.u=<1,3,-2>; v=<-5,3,2>
2.u=<1,-2,4>; v=<5,3,7>
1.u=<1,3,-2>; v=<-5,3,2>
The vectors are
u = i + 3j - 2k
v = -5i +3j + 2k
"\\cos \\theta" = "\\dfrac{u.v}{|u||v|}"
cosθ = "\\dfrac{(i + 3j - 2k ) . (-5i +3j + 2k) }{\\sqrt{14}*\\sqrt{38}}"
cosθ = -"\\dfrac{- 5 + 9 - 4}{\\sqrt{14}*\\sqrt{38}}" = 0
"\\theta" = "\\dfrac{\\pi}{2}"
Hence the vectors u and v are orthogonal to each other.
2.u=<1,-2,4>; v=<5,3,7>
The vectors are
u = i - 2j + 4k
v = 5i +3j + 7k
"\\cos \\theta" = "\\dfrac{u.v}{|u||v|}"
cosθ = "\\dfrac{(i - 2j + 4k ) . (5i +3j + 7k) }{\\sqrt{21}*\\sqrt{83}}"
cosθ = "\\dfrac{5 - 6 + 28}{\\sqrt{21}*\\sqrt{83}}"
"\\cos \\theta" = "\\dfrac{27}{\\sqrt{21}*\\sqrt{83}}"
"\\cos\\theta" = 0.647
"\\theta" = "49.68\\degree"
Since, "\\theta" < 90"\\degree" so u and v make the acute angle with each other.
Comments
Leave a comment