Question #209427

Determine in each case whether the given planes are parallel or perpendicular (2) (2) (a) x + y + 3z +10 - 0 and x + 2y - Z-1. (b) 3x - 2y + 2 - 6 - 0 and 4x +2y - 42 -0. (c) 3x + y +2 -1 = 0 and -x +2y +2 +3 = 0, (+0 (d) x - 3y + 2 + 1 - 0 and 3x - 4y +2 -1 -0. (2)


1
Expert's answer
2021-06-23T04:12:21-0400

a)

x+y+3z+10=0=>n1=(1,1,3)x+2yz1=0=>n2=(1,2,1)(n1,n2)=1+23=0=>cos(n1,n2)=0=>x+y+3z+10=0 => n_1=(1,1,3)\\ x+2y-z-1=0 => n_2=(1,2,-1)\\ (n_1,n_2)=1+2-3=0=> \cos(n_1,n_2)=0=>\\ planes are perpendicular

b)

3x2y+2z6=0=>n1=(3,2,2)4x+2y4z+2=0=>n2=(4,2,4)(n1,n2)=1248=0=>cos(n1,n2)=0=>3x-2y+2z-6=0=>n_1=(3,-2,2)\\ 4x+2y-4z+2=0=>n_2=(4,2,-4)\\ (n_1,n_2)=12-4-8=0=>\cos(n_1,n_2)=0=> planes are perpendicular

c)

3x+y+2z1=0=>n1=(3,1,2)x+2y+2z+3=0=>n2=(1,2,2)(n1,n2)=3+2+4=3n1=14n2=3cos(n1,n2)=314=>3x+y+2z-1=0=>n_1=(3,1,2)\\ -x+2y+2z+3=0=>n_2=(-1,2,2)\\ (n_1,n_2)=-3+2+4=3\\ |n_1|=\sqrt{14}\quad |n_2|=\sqrt{3}\\ \cos(n_1,n_2)=\frac{\sqrt{3}}{\sqrt{14}}=>

planes are neither parallel nor perpendicular

d)

x3y+2z+1=0=>n1=(1,3,2)3x4y+2z1=0=>n2=(3,4,2)(n1,n2)=3+12+4=19n1=14n2=29cos(n1,n2)=1914290.95=>x-3y+2z+1=0=>n_1=(1,-3,2)\\ 3x-4y+2z-1=0=>n_2=(3,-4,2)\\ (n_1,n_2)=3+12+4=19\\ |n_1|=\sqrt{14}\quad |n_2|=\sqrt{29}\\ \cos(n_1,n_2)=\frac{19}{\sqrt{14}\sqrt{29}}\approx0.95=>

planes are neither parallel nor perpendicular


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS