Question #121531
Find a centre and the principal axes of the following conicoid. Is it ellip-
soids, hyperboloids or something else?
3x2 + 5y2 + 3z2 + 2yz + 2zx + 2xy - 4x - 8z + 5 = 0
1
Expert's answer
2020-06-11T20:31:50-0400

Let,


f(x,y,x)=3x2+5y2+3z2+2yz+2zx+2xy4x8z+5=0f(x,y,x)=3x^2 + 5y^2 + 3z^2 + 2yz + 2zx + 2xy - 4x - 8z + 5 = 0

Thus, associated quadratic form is

Q(x,y,z)=3x2+5y2+3z2+2yz+2zx+2xyQ(x,y,z)=3x^2 + 5y^2 + 3z^2 + 2yz + 2zx + 2xy

Thus, matrix associated with quadratics form is A=[311151113]A=\begin{bmatrix} 3 & 1&1\\ 1 & 5&1\\ 1&1&3 \end{bmatrix}

Note that, the eigenvalues of A is

3λ1115λ1113λ=0    (λ2)(λ3)(λ6)=0\begin{vmatrix} 3-\lambda & 1&1\\ 1 & 5-\lambda&1\\ 1&1&3-\lambda \end{vmatrix}=0\implies (\lambda-2)(\lambda-3)(\lambda-6)=0

(λ1,λ2,λ3)=(2,3,6)(\lambda_1,\lambda_2,\lambda_3)=(2,3,6) in which all are positive,thus A is positive definite ,thus Hessian matrix H=2AH=2A is also positive definite.Hence f(x,y,z)f(x,y,z) has one critical point and which is center of the conic and can be found by


Hx=pHx=-p

where, p=[408]p=\begin{bmatrix} -4 \\ 0\\-8 \end{bmatrix}     x=H1p\implies x=-H^{-1}p ,On plugin the values we get, center

x=(13,13,43)Tx=(\frac{1}{3},-\frac{1}{3},\frac{4}{3})^T


Now, corresponding to each eigenvalues of A , eigen vectors is

Av1=λ1v1Av2=λ1v2Av3=λ1v3Av_1=\lambda_1v_1\\ Av_2=\lambda_1v_2\\ Av_3=\lambda_1v_3\\

On solving we get,

v1=(1,0,1)Tv2=(1,1,1)Tv3=(1,2,1)Tv_1=(-1,0,1)^T\\ v_2=(1,-1,1)^T\\ v_3=(1,2,1)^T

Thus ,respective unit vector is,

v1^=12(1,0,1)Tv2^=13(1,1,1)Tv3^=16(1,2,1)T\hat{v_1}=\frac{1}{\sqrt{2}}(-1,0,1)^T\\ \hat{v_2}=\frac{1}{\sqrt{3}}(1,-1,1)^T\\ \hat{v_3}=\frac{1}{\sqrt{6}}(1,2,1)^T

Hence, principle axis, l1,l2,l3l_1,l_2,l_3 will be

l1={(13,13,43)T+t12(1,0,1)TtR}l2={(13,13,43)T+t13(1,1,1)TtR}l3={(13,13,43)T+t16(1,2,1)TtR}l_1=\{(\frac{1}{3},-\frac{1}{3},\frac{4}{3})^T+t\frac{1}{\sqrt{2}}(-1,0,1)^T|t\in \mathbb{R}\}\\ l_2=\{(\frac{1}{3},-\frac{1}{3},\frac{4}{3})^T+t\frac{1}{\sqrt{3}}(1,-1,1)^T|t\in \mathbb{R}\}\\ l_3=\{(\frac{1}{3},-\frac{1}{3},\frac{4}{3})^T+t\frac{1}{\sqrt{6}}(1,2,1)^T|t\in \mathbb{R}\}\\

Moreover, consider the orthogonal matrix

Γ=(v1,v2,v3)\Gamma=(v_1,v_2,v_3)

And, orthogonal transformation

x=ΓTxx'=\Gamma^Tx

where,x=(x1,y1,z1)&x=(x1,y1,zz)x=(x_1,y_1,z_1)\&x'=(x'_1,y'_1,z'_z)

Thus,

Q(x)=xTΓTAΓx=2x2+3y2+6z2Q(x')=x'^T\Gamma^TA\Gamma x=2x'^2+3y'^2+6z'^2

Let,

P(x,y,z)=4x8z&r=5P(x,y,z)=- 4x - 8z \&r=5

Thus,

P(x)=P(Γx)P(x')=P(\Gamma x)

Hence, f(x)f(x) transforms to Q(x)+P(x)+r=0Q(x')+P(x')+r=0 .

Now, on simplification we get,

2X2+3Y2+6Z2=c2X^2+3Y^2+6Z^2=c

Where,

X=x12Y=y23Z=z16X=x'-\frac{1}{\sqrt{2}}\\ Y=y'-\frac{2}{\sqrt{3}}\\ Z=z'-\frac{1}{\sqrt{6}}\\

and c>0c>0 a constant.

Therefore, given conicoid is an ellipsoid


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
22.06.20, 21:46

Dear Tau, there are buttons on the right side with links to web-pages of AssignmentExpert at Facebook, YouTube, Twitter where you can press 'Like' buttons.

Tau
22.06.20, 07:46

But there is no like button besides Answer

Assignment Expert
15.06.20, 01:19

Dear Tau, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Tau
12.06.20, 03:56

Wow! I was looking at this question from a week and found it here. I am very helpful by this answer and thanks assignmentexpert.

LATEST TUTORIALS
APPROVED BY CLIENTS