Answer to Question #120637 in Analytic Geometry for usman

Question #120637
Determine \\(a-b-c\\), if \\(a=5i-2j\\), \\(b=3i+3j\\) and \\(c=4i-j\\)
1
Expert's answer
2020-06-08T19:53:41-0400

Given a=5i^2j^,b=3i^+3j^ and c=4i^j^\vec{a}=5\hat{i}-2\hat{j}, \vec{b}=3\hat{i}+3\hat{j} \ and \ \vec{c}=4\hat{i}-\hat{j}.

    abc=(5i^2j^)(3i^+3j^)(4i^j^)                          =5i^2j^3i^3j^4i^+j^=(534)i^+(23+1)j^                          =2i^4j^\implies \vec{a}-\vec{b}-\vec{c}=(5\hat{i}-2\hat{j})-(3\hat{i}+3\hat{j})-(4\hat{i}-\hat{j}) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 5\hat{i}-2\hat{j}-3\hat{i}-3\hat{j}-4\hat{i}+\hat{j} = (5-3-4)\hat{i} +(-2-3+1)\hat{j} \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = -2 \hat{i} - 4 \hat{j}

So, abc=2i^4j^\vec{a}-\vec{b}-\vec{c}= -2 \hat{i} - 4\hat{j} .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment