r = ( x y 1 ) r=\begin{pmatrix}
x \\
y\\1
\end{pmatrix} r = ⎝ ⎛ x y 1 ⎠ ⎞
r T = ( x y 1 ) r^T=\begin{pmatrix}
x & y&1
\end{pmatrix} r T = ( x y 1 )
A = ( 1 0 g 0 1 f g f c ) A=\begin{pmatrix}
1 &0&g \\
0 & 1&f\\
g&f&c
\end{pmatrix} A = ⎝ ⎛ 1 0 g 0 1 f g f c ⎠ ⎞
r T A r = ( x y 1 ) ( 1 0 g 0 1 f g f c ) ( x y 1 ) = = ( x + g y + f x g + y f + c ) ( x y 1 ) = = ( x 2 + x g + y 2 + y f + x g + y f + c ) = = ( x 2 + 2 x g + y 2 + 2 y f + c ) = 0 r^TAr=\begin{pmatrix}
x & y&1
\end{pmatrix}\begin{pmatrix}
1 &0&g \\
0 & 1&f\\
g&f&c
\end{pmatrix}\begin{pmatrix}
x \\
y\\1
\end{pmatrix}
=\\
=\begin{pmatrix}
x+g&y+f&xg+yf+c
\end{pmatrix}\begin{pmatrix}
x \\
y\\1
\end{pmatrix}=\\
=(x^2+xg+y^2+yf+xg+yf+c)=\\
=(x^2+2xg+y^2+2yf+c)=0 r T A r = ( x y 1 ) ⎝ ⎛ 1 0 g 0 1 f g f c ⎠ ⎞ ⎝ ⎛ x y 1 ⎠ ⎞ = = ( x + g y + f xg + y f + c ) ⎝ ⎛ x y 1 ⎠ ⎞ = = ( x 2 + xg + y 2 + y f + xg + y f + c ) = = ( x 2 + 2 xg + y 2 + 2 y f + c ) = 0
x 2 + 2 x g + g 2 − g 2 + y 2 + 2 y f + f 2 − f 2 + c = 0 ( x + g ) 2 + ( y + f ) 2 = g 2 + f 2 − c x^2+2xg+g^2-g^2+y^2+2yf+f^2-f^2+c=0\\
(x+g)^2+(y+f)^2=g^2+f^2-c x 2 + 2 xg + g 2 − g 2 + y 2 + 2 y f + f 2 − f 2 + c = 0 ( x + g ) 2 + ( y + f ) 2 = g 2 + f 2 − c
The circle: centre ( − g , − f ) (-g,-f) ( − g , − f ) , radius R = g 2 + f 2 − c R=\sqrt{g^2+f^2-c} R = g 2 + f 2 − c
Comments