"(1,0,0): (1-x_c)^2+(0-y_c)^2+(0-z_c)^2=R^2"
"(0,1,0): (0-x_c)^2+(1-y_c)^2+(0-z_c)^2=R^2"
"(0,0,1): (0-x_c)^2+(0-y_c)^2+(1-z_c)^2=R^2"
"(1\/\\sqrt{3}, 1\/\\sqrt{3}, 1\/\\sqrt{3}):"
Then
"1-2\\sqrt{3}x_c+3x_c^2=3x_c^2-2x_c+1"
"x_c={1\\over \\sqrt{3}}={\\sqrt{3}\\over 3}=y_c=z_c"
"R^2=3({1\\over \\sqrt{3}})^2-2({1\\over \\sqrt{3}})+1=2-{2\\over \\sqrt{3}}"
"C({\\sqrt{3}\\over 3}, {\\sqrt{3}\\over 3}, {\\sqrt{3}\\over 3}), R=\\sqrt{2-{2\\over \\sqrt{3}}}"
Comments
Dear Swarohi, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you so much
Leave a comment