( x − x c ) 2 + ( y − y c ) 2 + ( z − z c ) 2 = R 2 (x-x_c)^2+(y-y_c)^2+(z-z_c)^2=R^2 ( x − x c  ) 2 + ( y − y c  ) 2 + ( z − z c  ) 2 = R 2  ( 1 , 0 , 0 ) : ( 1 − x c ) 2 + ( 0 − y c ) 2 + ( 0 − z c ) 2 = R 2 (1,0,0): (1-x_c)^2+(0-y_c)^2+(0-z_c)^2=R^2 ( 1 , 0 , 0 ) : ( 1 − x c  ) 2 + ( 0 − y c  ) 2 + ( 0 − z c  ) 2 = R 2   
( 0 , 1 , 0 ) : ( 0 − x c ) 2 + ( 1 − y c ) 2 + ( 0 − z c ) 2 = R 2 (0,1,0): (0-x_c)^2+(1-y_c)^2+(0-z_c)^2=R^2 ( 0 , 1 , 0 ) : ( 0 − x c  ) 2 + ( 1 − y c  ) 2 + ( 0 − z c  ) 2 = R 2   
( 0 , 0 , 1 ) : ( 0 − x c ) 2 + ( 0 − y c ) 2 + ( 1 − z c ) 2 = R 2 (0,0,1): (0-x_c)^2+(0-y_c)^2+(1-z_c)^2=R^2 ( 0 , 0 , 1 ) : ( 0 − x c  ) 2 + ( 0 − y c  ) 2 + ( 1 − z c  ) 2 = R 2   
x c 2 − 2 x c + 1 + y c 2 + z c 2 = R 2 x_c^2-2x_c+1+y_c^2+z_c^2=R^2 x c 2  − 2 x c  + 1 + y c 2  + z c 2  = R 2 x c 2 + y c 2 − 2 y c + 1 + z c 2 = R 2 x_c^2+y_c^2-2y_c+1+z_c^2=R^2 x c 2  + y c 2  − 2 y c  + 1 + z c 2  = R 2 x c 2 + y c 2 + z c 2 − 2 z c + 1 = R 2 x_c^2+y_c^2+z_c^2-2z_c+1=R^2 x c 2  + y c 2  + z c 2  − 2 z c  + 1 = R 2  
x c = y c = z c x_c=y_c=z_c x c  = y c  = z c  3 x c 2 − 2 x c + 1 = R 2 3x_c^2-2x_c+1=R^2 3 x c 2  − 2 x c  + 1 = R 2  ( 1 / 3 , 1 / 3 , 1 / 3 ) : (1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3}): ( 1/ 3  , 1/ 3  , 1/ 3  ) :   
( 1 3 − x c ) 2 + ( 1 3 − y c ) 2 + ( 1 3 − z c ) 2 = R 2 ({1\over \sqrt{3}}-x_c)^2+({1\over \sqrt{3}}-y_c)^2+({1\over \sqrt{3}}-z_c)^2=R^2 ( 3  1  − x c  ) 2 + ( 3  1  − y c  ) 2 + ( 3  1  − z c  ) 2 = R 2  Then
3 ( 1 3 − x c ) 2 = 3 x c 2 − 2 x c + 1 3({1\over \sqrt{3}}-x_c)^2=3x_c^2-2x_c+1 3 ( 3  1  − x c  ) 2 = 3 x c 2  − 2 x c  + 1  
1 − 2 3 x c + 3 x c 2 = 3 x c 2 − 2 x c + 1 1-2\sqrt{3}x_c+3x_c^2=3x_c^2-2x_c+1 1 − 2 3  x c  + 3 x c 2  = 3 x c 2  − 2 x c  + 1  
x c = 1 3 = 3 3 = y c = z c x_c={1\over \sqrt{3}}={\sqrt{3}\over 3}=y_c=z_c x c  = 3  1  = 3 3   = y c  = z c   
R 2 = 3 ( 1 3 ) 2 − 2 ( 1 3 ) + 1 = 2 − 2 3 R^2=3({1\over \sqrt{3}})^2-2({1\over \sqrt{3}})+1=2-{2\over \sqrt{3}} R 2 = 3 ( 3  1  ) 2 − 2 ( 3  1  ) + 1 = 2 − 3  2   
C ( 3 3 , 3 3 , 3 3 ) , R = 2 − 2 3 C({\sqrt{3}\over 3}, {\sqrt{3}\over 3}, {\sqrt{3}\over 3}), R=\sqrt{2-{2\over \sqrt{3}}} C ( 3 3   , 3 3   , 3 3   ) , R = 2 − 3  2    
                             
Comments
Dear Swarohi, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!
Thank you so much