Answer to Question #120855 in Analytic Geometry for Mst. Bithy

Question #120855
Determine the equation of the hyperbola
1
Expert's answer
2020-06-09T18:14:55-0400

Standard Form of the Equation of a HyperbolaA hyperbola is the set of all points such that the difference of the distances between any point on the hyperbola and two fixed points is constant. The two fixed points  are called the foci of the hyperbola.We place the fociF1,F2 The center of this hyperbola is c(h,k). We let p(x,y)represent the coordinates of any point, on the hyperbola.What does the definition of a hyperbolaThe absolute value of the difference of the distances from the two fociPF1PF2must be constant. We denote this constant by 2aUse the distance formula.PF1PF2=2a[x(hc)]2+(yk)2[x(h+c)]2+(yk)2=2a[(xh)+c]2+(yk)2[(xh)c]2+(yk)2=2a[(xh)+c]2+(yk)2=2a+[(xh)c]2+(yk)2Squaring the sides(xh)2+2c(xh)+c2+(yk)2=4a2+4a[(xh)c]2+(yk)2+(xh)22c(xh)+c2+(yk)24a[(xh)c]2+(yk)2=4a24c(xh)a[(xh)c]2+(yk)2=a2+c(xh)a2[(xh)22c(xh)+c2+(yk)2]=a42a2c(xh)+c2(xh)2a2(xh)22a2c(xh)+a2c2+a2(yk)2=a42a2c(xh)+c2(xh)2a2(xh)2c2(xh)2+a2(yk)2=a4a2c2(a2c2)(xh)2+a2(yk)2=a2(a2c2)b2(xh)2+a2(yk)2=a2(b2)(xh)2a2(yk)2b2=1\text{Standard Form of the Equation of a Hyperbola}\\[1 em] \text{A hyperbola is the set of all points such that the difference of the distances between}\\[1 em] \text{ any point on the hyperbola and two fixed points is constant. The two fixed points }\\[1 em] \text{ are called the foci of the hyperbola.}\\[1 em] \text{We place the foci} F_1, F_2 \\[1 em] \text{ The center of this hyperbola is c(h,k).}\\[1 em] \text{ We let p(x,y)represent the coordinates of any point, on the hyperbola.}\\[1 em] \text{What does the definition of a hyperbola} \\[1 em] \text{The absolute value of the difference of the distances from the two foci} \\[1 em] \left |P F_{1}-P F_{2} \right | \text{must be constant. We denote this constant by 2a} \\[1 em] \text{Use the distance formula.} \\[1 em] P F_{1}-P F_{2} =2 a\\[1 em] \sqrt{[x-(h-c)]^{2}+(y-k)^{2}}-\sqrt{[x-(h+c)]^{2}+(y-k)^{2}} =2 a\\[1 em] \sqrt{[(x-h)+c]^{2}+(y-k)^{2}}-\sqrt{[(x-h)-c]^{2}+(y-k)^{2}} =2 a \\[1 em] \sqrt{[(x-h)+c]^{2}+(y-k)^{2}} =2 a+\sqrt{[(x-h)-c]^{2}+(y-k)^{2}} \\[1 em] \text{Squaring the sides} \\[1 em] (x-h)^{2}+2 c(x-h)+c^{2}+(y-k)^{2}\\[1 em] =4 a^{2}+4 a \sqrt{[(x-h)-c]^{2}+(y-k)^{2}}+(x-h)^{2}-2 c(x-h)+c^{2}+(y-k)^{2} \\[1 em] -4 a \sqrt{[(x-h)-c]^{2}+(y-k)^{2}} =4 a^{2}-4 c(x-h) \\[1 em] a \sqrt{[(x-h)-c]^{2}+(y-k)^{2}} =-a^{2}+c(x-h)\\[1 em] a^{2}\left[(x-h)^{2}-2 c(x-h)+c^{2}+(y-k)^{2}\right] =a^{4}-2 a^{2} c(x-h)+c^{2}(x-h)^{2} \\[1 em] a^{2}(x-h)^{2}-2 a^{2} c(x-h)+a^{2} c^{2}+a^{2}(y-k)^{2} =a^{4}-2 a^{2} c(x-h)+c^{2}(x-h)^{2} \\[1 em] a^{2}(x-h)^{2}-c^{2}(x-h)^{2}+a^{2}(y-k)^{2} =a^{4}-a^{2} c^{2} \\[1 em] \left(a^{2}-c^{2}\right)(x-h)^{2}+a^{2}(y-k)^{2} =a^{2}\left(a^{2}-c^{2}\right) \\[1 em] -b^{2}(x-h)^{2}+a^{2}(y-k)^{2} =a^{2}\left(-b^{2}\right) \\[1 em] \frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}} =1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment