Standard Form of the Equation of a HyperbolaA hyperbola is the set of all points such that the difference of the distances between any point on the hyperbola and two fixed points is constant. The two fixed points are called the foci of the hyperbola.We place the fociF1,F2 The center of this hyperbola is c(h,k). We let p(x,y)represent the coordinates of any point, on the hyperbola.What does the definition of a hyperbolaThe absolute value of the difference of the distances from the two foci∣PF1−PF2∣must be constant. We denote this constant by 2aUse the distance formula.PF1−PF2=2a[x−(h−c)]2+(y−k)2−[x−(h+c)]2+(y−k)2=2a[(x−h)+c]2+(y−k)2−[(x−h)−c]2+(y−k)2=2a[(x−h)+c]2+(y−k)2=2a+[(x−h)−c]2+(y−k)2Squaring the sides(x−h)2+2c(x−h)+c2+(y−k)2=4a2+4a[(x−h)−c]2+(y−k)2+(x−h)2−2c(x−h)+c2+(y−k)2−4a[(x−h)−c]2+(y−k)2=4a2−4c(x−h)a[(x−h)−c]2+(y−k)2=−a2+c(x−h)a2[(x−h)2−2c(x−h)+c2+(y−k)2]=a4−2a2c(x−h)+c2(x−h)2a2(x−h)2−2a2c(x−h)+a2c2+a2(y−k)2=a4−2a2c(x−h)+c2(x−h)2a2(x−h)2−c2(x−h)2+a2(y−k)2=a4−a2c2(a2−c2)(x−h)2+a2(y−k)2=a2(a2−c2)−b2(x−h)2+a2(y−k)2=a2(−b2)a2(x−h)2−b2(y−k)2=1
Comments
Leave a comment