OR→=(3−0)i^+(4−0)j^+(12−0)k^=\overrightarrow{OR}=(3-0)\hat{i}+(4-0)\hat{j}+(12-0)\hat{k}=OR=(3−0)i^+(4−0)j^+(12−0)k^= 3i^+4j^+12k^3\hat{i}+4\hat{j}+12\hat{k}3i^+4j^+12k^
∣OR→∣=32+42+122=13|\overrightarrow{OR}|=\sqrt{3^2+4^2+12^2}=13∣OR∣=32+42+122=13
Unit vector =313i^+413j^+1213k^=\frac{3}{13}\hat{i}+\frac{4}{13}\hat{j}+\frac{12}{13}\hat{k}=133i^+134j^+1312k^
Direction cosines ≡(313,413,1213)\equiv (\frac{3}{13},\frac{4}{13},\frac{12}{13})≡(133,134,1312)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments