Let u⃗(u1,u2,u3),v⃗(v1,v2,v3)\vec u(u_1,u_2,u_3),\vec v(v_1,v_2,v_3)u(u1,u2,u3),v(v1,v2,v3) then u⃗−v⃗=a⃗(u1−v1,u2−v2,u3−v3),\vec u-\vec v=\vec a(u_1-v_1,u_2-v_2,u_3-v_3),u−v=a(u1−v1,u2−v2,u3−v3),
u⃗+v⃗=b⃗(u1+v1,u2+v2,u3+v3)\vec u+\vec v=\vec b(u_1+v_1,u_2+v_2,u_3+v_3)u+v=b(u1+v1,u2+v2,u3+v3) . a⃗,b⃗\vec a,\vec ba,b are ortogonal when the dot product
a⃗⋅b⃗=u12−v12+u22−v22+u32−v32=0\vec a\sdot\vec b=u_1^2-v_1^2+u_2^2-v_2^2+u_3^2-v_3^2=0a⋅b=u12−v12+u22−v22+u32−v32=0 hence u12+u22+u32=v12+v22+v32u_1^2+u_2^2+u_3^2=v_1^2+v_2^2+v_3^2u12+u22+u32=v12+v22+v32
or ∣u∣=∣v∣.|u|=|v|.∣u∣=∣v∣. Next,
u⃗,v⃗\vec u,\vec vu,v are sides of a rhombus, u⃗+v⃗,u⃗−v⃗\vec u+\vec v,\vec u-\vec vu+v,u−v are diagonals of a rhombus.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments