Let "\\vec u(u_1,u_2,u_3),\\vec v(v_1,v_2,v_3)" then "\\vec u-\\vec v=\\vec a(u_1-v_1,u_2-v_2,u_3-v_3),"
"\\vec u+\\vec v=\\vec b(u_1+v_1,u_2+v_2,u_3+v_3)" . "\\vec a,\\vec b" are ortogonal when the dot product
"\\vec a\\sdot\\vec b=u_1^2-v_1^2+u_2^2-v_2^2+u_3^2-v_3^2=0" hence "u_1^2+u_2^2+u_3^2=v_1^2+v_2^2+v_3^2"
or "|u|=|v|." Next,
"\\vec u,\\vec v" are sides of a rhombus, "\\vec u+\\vec v,\\vec u-\\vec v" are diagonals of a rhombus.
Comments
Leave a comment