Let u ⃗ ( u 1 , u 2 , u 3 ) , v ⃗ ( v 1 , v 2 , v 3 ) \vec u(u_1,u_2,u_3),\vec v(v_1,v_2,v_3) u ( u 1 , u 2 , u 3 ) , v ( v 1 , v 2 , v 3 ) then u ⃗ − v ⃗ = a ⃗ ( u 1 − v 1 , u 2 − v 2 , u 3 − v 3 ) , \vec u-\vec v=\vec a(u_1-v_1,u_2-v_2,u_3-v_3), u − v = a ( u 1 − v 1 , u 2 − v 2 , u 3 − v 3 ) ,
u ⃗ + v ⃗ = b ⃗ ( u 1 + v 1 , u 2 + v 2 , u 3 + v 3 ) \vec u+\vec v=\vec b(u_1+v_1,u_2+v_2,u_3+v_3) u + v = b ( u 1 + v 1 , u 2 + v 2 , u 3 + v 3 ) . a ⃗ , b ⃗ \vec a,\vec b a , b are ortogonal when the dot product
a ⃗ ⋅ b ⃗ = u 1 2 − v 1 2 + u 2 2 − v 2 2 + u 3 2 − v 3 2 = 0 \vec a\sdot\vec b=u_1^2-v_1^2+u_2^2-v_2^2+u_3^2-v_3^2=0 a ⋅ b = u 1 2 − v 1 2 + u 2 2 − v 2 2 + u 3 2 − v 3 2 = 0 hence u 1 2 + u 2 2 + u 3 2 = v 1 2 + v 2 2 + v 3 2 u_1^2+u_2^2+u_3^2=v_1^2+v_2^2+v_3^2 u 1 2 + u 2 2 + u 3 2 = v 1 2 + v 2 2 + v 3 2
or ∣ u ∣ = ∣ v ∣ . |u|=|v|. ∣ u ∣ = ∣ v ∣. Next,
u ⃗ , v ⃗ \vec u,\vec v u , v are sides of a rhombus, u ⃗ + v ⃗ , u ⃗ − v ⃗ \vec u+\vec v,\vec u-\vec v u + v , u − v are diagonals of a rhombus.
Comments