Answer to Question #110923 in Analytic Geometry for Proloy nag

Question #110923
show that for any three vectors a,b,c
a×(b×c)+b×(c×a)+c×(a×b)=0
1
Expert's answer
2020-04-20T18:27:12-0400

Considera=(ax,ay,az);b=(bx,by,bz);c=(cx,cy,cz).(b×c)=ijkbxbybzcxcycz=i(byczbzcy)j(bxczbzcx)+k(bxcybycx);a×(b×c)=ijkaxayaz(byczbzcy)(bzcxbxcz)(bxcybycx)=i(ay(bxcybycx)az(bzcxbxcz))j(ax(bxcybycx)az(byczbzcy))+k(ax(bzcxbxcz)ay(byczbzcy));(c×a)=ijkcxcyczaxayaz=i(cyazczay)j(cxazczax)+k(cxaycyax);b×(c×a)=ijkbxbybz(cyazczay)(czaxcxaz)(cxaycyax)=i(by(cxaycyax)bz(czaxcxaz))j(bx(cxaycyax)bz(cyazczay))+k(bx(czaxcxaz)by(cyazczay));(a×b)=ijkaxayazbxbybz=i(aybzazby)j(axbzazbx)+k(axbyaybx);c×(a×b)=ijkcxcycz(aybzazby)(azbxaxbz)(axbyaybx)=i(cy(axbyaybx)cz(azbxaxbz))j(cx(axbyaybx)cz(aybzazby))+k(cx(azbxaxbz)cy(aybzazby));a×(b×c)+b×(a×a)+c×(a×b)=(ay(bxcybycx)az(bzcxbxcz))+(by(cxaycyax)bz(czaxcxaz))+(cy(axbyaybx)cz(azbxaxbz))((ax(bxcybycx)az(byczbzcy))+(bx(cxaycyax)bz(cyazczay))+(cx(axbyaybx)cz(aybzazby)))+(ax(bzcxbxcz)ay(byczbzcy))+(bx(czaxcxaz)by(cyazczay))+(cx(azbxaxbz)cy(aybzazby))=0{\rm Consider}\, \\ \vec{a}=(a_x,a_y,a_z); \vec{b}=(b_x,b_y,b_z); \vec{c}=(c_x,c_y,c_z).\\ (\vec{b}\times\vec{c})= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix} = \vec{i} (b_y c_z - b_z c_y )- \\ \vec{j} ( b_x c_z - b_z c_x ) + \vec{k} (b_x c_y -b_y c_x);\\ \vec{a}\times(\vec{b}\times\vec{c})=\\ \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ (b_y c_z - b_z c_y )& ( b_z c_x - b_x c_z ) & (b_x c_y -b_y c_x) \end{vmatrix} =\\ \vec{i}(a_y (b_x c_y -b_y c_x)-a_z( b_z c_x - b_x c_z ) )-\\ \vec{j}( a_x(b_x c_y -b_y c_x)-a_z(b_y c_z - b_z c_y ))+\\ \vec{k}( a_x( b_z c_x - b_x c_z )-a_y(b_y c_z - b_z c_y ));\\ (\vec{c}\times\vec{a})= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ c_x & c_y & c_z \\ a_x & a_y & a_z \end{vmatrix} = \vec{i} (c_y a_z - c_z a_y )- \\ \vec{j} ( c_x a_z - c_z a_x ) + \vec{k} (c_x a_y -c_y a_x);\\ \vec{b}\times(\vec{c}\times\vec{a})=\\ \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ b_x & b_y & b_z \\ (c_y a_z - c_z a_y )& ( c_z a_x - c_x a_z ) & (c_x a_y -c_y a_x) \end{vmatrix} =\\ \vec{i}(b_y (c_x a_y -c_y a_x)-b_z( c_z a_x - c_x a_z ) )-\\ \vec{j}( b_x(c_x a_y -c_y a_x)-b_z(c_y a_z - c_z a_y ))+\\ \vec{k}( b_x( c_z a_x - c_x a_z )-b_y(c_y a_z - c_z a_y ));\\ (\vec{a}\times\vec{b})= \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \vec{i} (a_y b_z - a_z b_y )- \\ \vec{j} ( a_x b_z - a_z b_x ) + \vec{k} (a_x b_y -a_y b_x);\\ \vec{c}\times(\vec{a}\times\vec{b})=\\ \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ c_x & c_y & c_z \\ (a_y b_z - a_z b_y )& ( a_z b_x - a_x b_z ) & (a_x b_y -a_y b_x) \end{vmatrix} =\\ \vec{i}(c_y (a_x b_y -a_y b_x)-c_z( a_z b_x - a_x b_z ) )-\\ \vec{j}( c_x(a_x b_y -a_y b_x)-c_z(a_y b_z - a_z b_y ))+\\ \vec{k}( c_x( a_z b_x - a_x b_z )-c_y(a_y b_z - a_z b_y ));\\ \vec{a}\times(\vec{b}\times\vec{c})+\vec{b}\times(\vec{a}\times\vec{a})+\vec{c}\times(\vec{a}\times\vec{b})=\\ (a_y (b_x c_y -b_y c_x)-a_z( b_z c_x - b_x c_z ) )+\\ (b_y (c_x a_y -c_y a_x)-b_z( c_z a_x - c_x a_z ) )+\\ (c_y (a_x b_y -a_y b_x)-c_z( a_z b_x - a_x b_z ) )-\\ (( a_x(b_x c_y -b_y c_x)-a_z(b_y c_z - b_z c_y ))+\\ ( b_x(c_x a_y -c_y a_x)-b_z(c_y a_z - c_z a_y ))+\\ ( c_x(a_x b_y -a_y b_x)-c_z(a_y b_z - a_z b_y )) )+\\ ( a_x( b_z c_x - b_x c_z )-a_y(b_y c_z - b_z c_y ))+\\ ( b_x( c_z a_x - c_x a_z )-b_y(c_y a_z - c_z a_y ))+\\ ( c_x( a_z b_x - a_x b_z )-c_y(a_y b_z - a_z b_y ))=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment