Lets write the cross product formula:
AxB ="\\begin{vmatrix}\n i & j & k\\\\\n A_1 & A_2 & A_3\\\\\n B_1 & B_2 & B_3\n\\end{vmatrix} ="
= (A2B3 - A3B2)i - (A1B3 - A3B1)j + (A1B2 - A2B1)k
The length of vector is:
"|a|=\\sqrt{a_1^2+a_2^2+a_3^2}"
The sum of two vectors is:
a + b = {a1 + b1; a2 + b2; a3 + b3}
The difference of two vectors is:
a - b = {a1 - b1; a2 - b2; a3 - b3}
So let's find |AxB|:
AxB = "\\begin{vmatrix}\n i & j & k\\\\\n 3 & -1 & -2\\\\\n 2 & 3 & 1\n\\end{vmatrix} ="
= ((-1)*1 - (-2)*3)i - (3*1 - (-2)*2) + (3·3 - (-1)·2)k = (-1 + 6)i - (3 + 4)j + (9 + 2)k = {5; -7; 11}
|AxB| = "\\sqrt{5^2+(-7)^2+11^2}=\\sqrt{25+49+121}=\\sqrt{195}\\approx" 13.96
Now let's find (A+2B)x(2A-B):
2B = {2*B1; 2*B2; 2*B3} = {2*2; 2*3; 2*1} = {4; 6; 2}
2A = {2*A1; 2*A2; 2*A3} = {2*3; 2*(-1); 2*(-2)} = {6; -2; -4}
A + 2B = {3 + 4; (-1) + 6; (-2)+2} = {7; 5; 0}
2A - B = {6 - 2; (-2) - 3; (-4) - 1} = {4; -5; -5}
(A + 2B)x(2A - B) = "\\begin{vmatrix}\n i & j & k\\\\\n 7 & 5 & 0\\\\\n 4 & -5 & -5\n\\end{vmatrix} ="
= (5*(-5) - 0*(-5))i - (7*(-5) - 0*4)j + (7*(-5) - 5*4)k = (-25 - 0)i - (-35 - 0)j + (-35 - 20)k = {-25; 35; -55}
Finally let's find (A + B)x(A - B):
A + B = {3 + 2; (-1) + 3; (-2) + 1} = {5; 2; -1}
A - B = {3 - 2; (-1) - 3; (-2) - 1} = {1; -4; -3}
(A + B)x(A - B) = "\\begin{vmatrix}\n i & j & k\\\\\n 5 & 2 & -1\\\\\n 1 & -4 & -3\n\\end{vmatrix} ="
= (2*(-3) - (-1)*(-4))i - (5*(-3) - (-1)*1)j + (5*(-4) - 2*1)k = (-6 - 4)i - (-15 + 1)j + (-20 - 2)k = {-10; 14; -22}
Comments
Leave a comment