Let A=(3, -1, 2), B=(1, -1, 2), C=(4, -2, 1).
Then find the distance between the vertices of triangle:
c = AB = "\\sqrt{\\smash[b]{(3 - 1)^2 + (-1 - (-1))^2 + (2 - 2)^2}} = 2",
a = BC = "\\sqrt{\\smash[b]{(1 - 4)^2 + (-1 - (-2))^2 + (2 - 1)^2}} = \\sqrt{\\smash[b]{11}},"
b =AC = "\\sqrt{\\smash[b]{(3 - 4)^2 + (-1 - (-2)^2 + (2 - 1)^2)}} = \\sqrt{\\smash[b]{3}}" .
The last step is to use the Heron's formula for the area of triangle:
"A=\\sqrt{\\smash[b]{\\frac{(a+b+c)}{2}\\frac{(b+c-a)}{2}\\frac{(a-b+c)}{2}\\frac{(a+b-c)}{2}}} =\\\\= \\frac{1}{4}\\sqrt{\\smash[b]{(2+ \\sqrt{\\smash[b]{11}} + \\sqrt{\\smash[b]{3})}}}\\cdot\\sqrt{\\smash[b]{( \\sqrt{\\smash[b]{11}} + \\sqrt{\\smash[b]{3}} - 2)}}\\cdot \\sqrt{\\smash[b]{(2- \\sqrt{\\smash[b]{11}} + \\sqrt{\\smash[b]{3})}}}\\cdot\n\\sqrt{\\smash[b]{(2+ \\sqrt{\\smash[b]{11}} - \\sqrt{\\smash[b]{3})}}} =\\\\= \\frac{1}{4}\\sqrt{\\smash[b]{(7+ 4 \\sqrt{\\smash[b]{3}}-11})}\\cdot\\cdot\\sqrt{\\smash[b]{(2\\sqrt{\\smash[b]{11}} +11 - \\sqrt{\\smash[b]{33}} + 2\\sqrt{\\smash[b]{3}} + \\sqrt{\\smash[b]{33}} -3 -4 - 2\\sqrt{\\smash[b]{11}} + 2\\sqrt{\\smash[b]{3}})}} =\\\\= \\frac{1}{4} \\sqrt{\\smash[b]{(4\\sqrt{\\smash[b]{3}} - 4})(4 + 4\\sqrt{\\smash[b]{3}})} = \\frac{1}{4}\\cdot 4 \\sqrt{\\smash[b]{(\\sqrt{\\smash[b]{3}}- 1)}(\\sqrt{\\smash[b]{3}} +1)} = \\sqrt{\\smash[b]{2}}."
Comments
Leave a comment