Let A=(3, -1, 2), B=(1, -1, 2), C=(4, -2, 1).
Then find the distance between the vertices of triangle:
c = AB = ( 3 − 1 ) 2 + ( − 1 − ( − 1 ) ) 2 + ( 2 − 2 ) 2 = 2 \sqrt{\smash[b]{(3 - 1)^2 + (-1 - (-1))^2 + (2 - 2)^2}} = 2 ( 3 − 1 ) 2 + ( − 1 − ( − 1 ) ) 2 + ( 2 − 2 ) 2 = 2 ,
a = BC = ( 1 − 4 ) 2 + ( − 1 − ( − 2 ) ) 2 + ( 2 − 1 ) 2 = 11 , \sqrt{\smash[b]{(1 - 4)^2 + (-1 - (-2))^2 + (2 - 1)^2}} = \sqrt{\smash[b]{11}}, ( 1 − 4 ) 2 + ( − 1 − ( − 2 ) ) 2 + ( 2 − 1 ) 2 = 11 ,
b =AC = ( 3 − 4 ) 2 + ( − 1 − ( − 2 ) 2 + ( 2 − 1 ) 2 ) = 3 \sqrt{\smash[b]{(3 - 4)^2 + (-1 - (-2)^2 + (2 - 1)^2)}} = \sqrt{\smash[b]{3}} ( 3 − 4 ) 2 + ( − 1 − ( − 2 ) 2 + ( 2 − 1 ) 2 ) = 3 .
The last step is to use the Heron's formula for the area of triangle:
A = ( a + b + c ) 2 ( b + c − a ) 2 ( a − b + c ) 2 ( a + b − c ) 2 = = 1 4 ( 2 + 11 + 3 ) ⋅ ( 11 + 3 − 2 ) ⋅ ( 2 − 11 + 3 ) ⋅ ( 2 + 11 − 3 ) = = 1 4 ( 7 + 4 3 − 11 ) ⋅ ⋅ ( 2 11 + 11 − 33 + 2 3 + 33 − 3 − 4 − 2 11 + 2 3 ) = = 1 4 ( 4 3 − 4 ) ( 4 + 4 3 ) = 1 4 ⋅ 4 ( 3 − 1 ) ( 3 + 1 ) = 2 . A=\sqrt{\smash[b]{\frac{(a+b+c)}{2}\frac{(b+c-a)}{2}\frac{(a-b+c)}{2}\frac{(a+b-c)}{2}}} =\\= \frac{1}{4}\sqrt{\smash[b]{(2+ \sqrt{\smash[b]{11}} + \sqrt{\smash[b]{3})}}}\cdot\sqrt{\smash[b]{( \sqrt{\smash[b]{11}} + \sqrt{\smash[b]{3}} - 2)}}\cdot \sqrt{\smash[b]{(2- \sqrt{\smash[b]{11}} + \sqrt{\smash[b]{3})}}}\cdot
\sqrt{\smash[b]{(2+ \sqrt{\smash[b]{11}} - \sqrt{\smash[b]{3})}}} =\\= \frac{1}{4}\sqrt{\smash[b]{(7+ 4 \sqrt{\smash[b]{3}}-11})}\cdot\cdot\sqrt{\smash[b]{(2\sqrt{\smash[b]{11}} +11 - \sqrt{\smash[b]{33}} + 2\sqrt{\smash[b]{3}} + \sqrt{\smash[b]{33}} -3 -4 - 2\sqrt{\smash[b]{11}} + 2\sqrt{\smash[b]{3}})}} =\\= \frac{1}{4} \sqrt{\smash[b]{(4\sqrt{\smash[b]{3}} - 4})(4 + 4\sqrt{\smash[b]{3}})} = \frac{1}{4}\cdot 4 \sqrt{\smash[b]{(\sqrt{\smash[b]{3}}- 1)}(\sqrt{\smash[b]{3}} +1)} = \sqrt{\smash[b]{2}}. A = 2 ( a + b + c ) 2 ( b + c − a ) 2 ( a − b + c ) 2 ( a + b − c ) = = 4 1 ( 2 + 11 + 3 ) ⋅ ( 11 + 3 − 2 ) ⋅ ( 2 − 11 + 3 ) ⋅ ( 2 + 11 − 3 ) = = 4 1 ( 7 + 4 3 − 11 ) ⋅ ⋅ ( 2 11 + 11 − 33 + 2 3 + 33 − 3 − 4 − 2 11 + 2 3 ) = = 4 1 ( 4 3 − 4 ) ( 4 + 4 3 ) = 4 1 ⋅ 4 ( 3 − 1 ) ( 3 + 1 ) = 2 .
Comments