Question #111793
Find the polar equations of the lines or curves whose Cartesian equations are
(a) (x x a)
2 + (y y a)
2 = a
2
(b) x
2/a2 + y
2/b2 = 1 (c) y = 2x (d) y = x
2
(e) xy = 4 (f) y = 4 (g) 3x x y + 2 = 0.
1
Expert's answer
2020-04-24T18:20:46-0400

Note: for verification I will use a graphical online calculator -https://www.desmos.com/calculator

As we know the Cartesian coordinates are related to polar related relationships



{x=rcosθy=rsinθ\left\{\begin{array}{l} x=r\cdot\cos\theta\\ y=r\cdot\sin\theta \end{array}\right.

( More information: https://en.wikipedia.org/wiki/Polar_coordinate_system )

This is enough to solve this task.


(с) y=2xy=2x

Then,



rsinθ=2rcosθ[r=0sinθ=2cosθ÷(cosθ)[r=0describes the origintanθ=2describes other points of the liner\cdot\sin\theta=2r\cdot\cos\theta\to \left[\begin{array}{l} r=0\\ \left.\sin\theta=2\cos\theta\right|\div\left(\cos\theta\right) \end{array}\right.\\[0.3cm] \left[\begin{array}{l} r=0-\text{describes the origin}\\ \tan\theta=2-\text{describes other points of the line} \end{array}\right.

(d) y=x2y=x^2



rsinθ=r2cos2θ[r=0sinθ=rcos2θ÷(cos2θ)[r=0describes the originr=sinθcos2θdescribes other points of parabolar\cdot\sin\theta=r^2\cdot\cos^2\theta\to \left[\begin{array}{l} r=0\\ \left.\sin\theta=r\cos^2\theta\right|\div\left(\cos^2\theta\right) \end{array}\right.\\[0.3cm] \left[\begin{array}{l} r=0-\text{describes the origin}\\[0.3cm] r=\displaystyle\frac{\sin\theta}{\cos^2\theta}-\text{describes other points of parabola} \end{array}\right.\\[0.3cm]




(e) xy=4xy=4



(rsinθ)(rcosθ)=4×(2)r2(2sinθcosθsin2θ)=8r2=8sin2θr=8sin2θ\left.\left(r\cdot\sin\theta\right)\cdot\left(r\cdot\cos\theta\right)=4\right|\times(2)\longrightarrow\\[0.3cm] r^2\cdot\left(\underbrace{2\sin\theta\cdot\cos\theta}_{sin2\theta}\right)=8\longrightarrow\\[0.3cm] r^2=\frac{8}{\sin2\theta}\longrightarrow\boxed{r=\sqrt{\frac{8}{\sin2\theta}}}





(f) y=4y=4



rsinθ=4r\cdot\sin\theta=4




(g) 3xy+2=03x-y+2=0



3rcosθrsinθ+2=0r(3cosθsinθ)=2r=23cosθsinθ3r\cdot\cos\theta-r\cdot\sin\theta+2=0\longrightarrow\\[0.3cm] r\cdot\left(3\cos\theta-\sin\theta\right)=-2\longrightarrow\\[0.3cm] r=\frac{-2}{3\cos\theta-\sin\theta}





(b) x2/a2+y2/b2=1x^2/a^2+y^2/b^2=1



(rcosθ)2a2+(rsinθ)2b2=1×(a2b2)r2(b2cos2θ+a2sin2θ)=a2b2r=a2b2b2cos2θ+a2sin2θr=abb2cos2θ+a2sin2θ\left.\frac{\left(r\cdot\cos\theta\right)^2}{a^2}+\frac{\left(r\cdot\sin\theta\right)^2}{b^2}=1\right|\times\left(a^2b^2\right)\\[0.3cm] r^2\cdot\left(b^2\cdot\cos^2\theta+a^2\cdot\sin^2\theta\right)=a^2b^2\\[0.3cm] r=\sqrt{\frac{a^2b^2}{b^2\cdot\cos^2\theta+a^2\cdot\sin^2\theta}}\\[0.3cm] r=\frac{ab}{\sqrt{b^2\cdot\cos^2\theta+a^2\cdot\sin^2\theta}}

Note: for example, I took a=2a=2 and b=3b=3




(a) (xa)2+(ya)2=a2(x-a)^2+(y-a)^2=a^2



(rcosθa)2+(rsinθa)2=a2r2(cos2θ+sin2θ=1)2ar(cosθ+sinθ)+2a2=a2r22ar2(22cosθ+22sinθ)+a2=0r222arcos(θπ4)+a2=0\left(r\cdot\cos\theta-a\right)^2+\left(r\cdot\sin\theta-a\right)^2=a^2\\[0.3cm] r^2\cdot\left(\underbrace{\cos^2\theta+\sin^2\theta}_{=1}\right)-2ar\cdot\left(\cos\theta+\sin\theta\right)+2a^2=a^2\\[0.3cm] r^2-2ar\sqrt{2}\cdot\left(\frac{\sqrt{2}}{2}\cos\theta+\frac{\sqrt{2}}{2}\sin\theta\right)+a^2=0\\[0.3cm] r^2-2\sqrt{2}ar\cdot\cos\left(\theta-\frac{\pi}{4}\right)+a^2=0

Note: for example, I took a=2a=2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
27.04.20, 14:51

Dear Kwesi Tsiks, You are welcome. We are glad to be helpful. If you liked our service, please press a like-button beside the answer field. Thank you!

Kwesi Tsiks
25.04.20, 01:44

Thanks

LATEST TUTORIALS
APPROVED BY CLIENTS