Note: r=x2+y2;sin(θ)=x2+y2y;cos(θ)=x2+y2x
a) r=a
x2+y2=ax2+y2=a2
b)r=acos(2θ)
r=a(2cos2(θ)−1)x2+y2=a(2(x2+y2x)2−1)x2+y2=a(x2+y22x2−1)x2+y2=ax2+y2x2−y2
x2+y2=a2(x2+y2)2(x2−y2)2(x2+y2)3=a2(x2−y2)2
c) r2=a2sin(2θ)
r2=2a2sin(θ)cos(θ)x2+y2=2a2x2+y2yx2+y2xx2+y2=2a2x2+y2xy(x2+y2)2=2a2xy
e)r=asec(θ−α)
r=cos(θ−α)arcos(θ−α)=a
r(cos(θ)cos(α)+sin(θ)sin(α))=a
x2+y2(x2+y2xcos(α)+x2+y2ysin(α))=axcos(α)+ysin(α)=a
Comments