Note: r = x 2 + y 2 ; s i n ( θ ) = y x 2 + y 2 ; c o s ( θ ) = x x 2 + y 2 r=\sqrt{x^2+y^2}; sin(\theta)=\frac{y}{\sqrt{x^2+y^2}}; cos(\theta)=\frac{x}{\sqrt{x^2+y^2}} r = x 2 + y 2 ; s in ( θ ) = x 2 + y 2 y ; cos ( θ ) = x 2 + y 2 x
a) r = a r=a r = a
x 2 + y 2 = a x 2 + y 2 = a 2 \sqrt{x^2+y^2}=a\\
x^2+y^2=a^2 x 2 + y 2 = a x 2 + y 2 = a 2
b)r = a c o s ( 2 θ ) r=acos(2\theta) r = a cos ( 2 θ )
r = a ( 2 c o s 2 ( θ ) − 1 ) x 2 + y 2 = a ( 2 ( x x 2 + y 2 ) 2 − 1 ) x 2 + y 2 = a ( 2 x 2 x 2 + y 2 − 1 ) x 2 + y 2 = a x 2 − y 2 x 2 + y 2 r=a(2cos^2(\theta)-1)\\
\sqrt{x^2+y^2}=a(2(\frac{x}{\sqrt{x^2+y^2}})^2-1)\\
\sqrt{x^2+y^2}=a(\frac{2x^2}{x^2+y^2}-1)\\
\sqrt{x^2+y^2}=a\frac{x^2-y^2}{x^2+y^2} r = a ( 2 co s 2 ( θ ) − 1 ) x 2 + y 2 = a ( 2 ( x 2 + y 2 x ) 2 − 1 ) x 2 + y 2 = a ( x 2 + y 2 2 x 2 − 1 ) x 2 + y 2 = a x 2 + y 2 x 2 − y 2
x 2 + y 2 = a 2 ( x 2 − y 2 ) 2 ( x 2 + y 2 ) 2 ( x 2 + y 2 ) 3 = a 2 ( x 2 − y 2 ) 2 x^2+y^2=a^2\frac{(x^2-y^2)^2}{(x^2+y^2)^2}\\
(x^2+y^2)^3=a^2(x^2-y^2)^2 x 2 + y 2 = a 2 ( x 2 + y 2 ) 2 ( x 2 − y 2 ) 2 ( x 2 + y 2 ) 3 = a 2 ( x 2 − y 2 ) 2
c) r 2 = a 2 s i n ( 2 θ ) r^2=a^2sin(2\theta) r 2 = a 2 s in ( 2 θ )
r 2 = 2 a 2 s i n ( θ ) c o s ( θ ) x 2 + y 2 = 2 a 2 y x 2 + y 2 x x 2 + y 2 x 2 + y 2 = 2 a 2 x y x 2 + y 2 ( x 2 + y 2 ) 2 = 2 a 2 x y r^2=2a^2sin(\theta)cos(\theta)\\
x^2+y^2=2a^2\frac{y}{\sqrt{x^2+y^2}}\frac{x}{\sqrt{x^2+y^2}}\\
x^2+y^2=2a^2\frac{xy}{x^2+y^2}\\
(x^2+y^2)^2=2a^2xy r 2 = 2 a 2 s in ( θ ) cos ( θ ) x 2 + y 2 = 2 a 2 x 2 + y 2 y x 2 + y 2 x x 2 + y 2 = 2 a 2 x 2 + y 2 x y ( x 2 + y 2 ) 2 = 2 a 2 x y
e)r = a s e c ( θ − α ) r=asec(\theta-\alpha) r = a sec ( θ − α )
r = a c o s ( θ − α ) r c o s ( θ − α ) = a r=\frac{a}{cos(\theta-\alpha)}\\
rcos(\theta-\alpha)=a r = cos ( θ − α ) a rcos ( θ − α ) = a
r ( c o s ( θ ) c o s ( α ) + s i n ( θ ) s i n ( α ) ) = a r(cos(\theta)cos(\alpha)+sin(\theta)sin(\alpha))=a r ( cos ( θ ) cos ( α ) + s in ( θ ) s in ( α )) = a
x 2 + y 2 ( x x 2 + y 2 c o s ( α ) + y x 2 + y 2 s i n ( α ) ) = a x c o s ( α ) + y s i n ( α ) = a \sqrt{x^2+y^2}(\frac{x}{\sqrt{x^2+y^2}}cos(\alpha)+\frac{y}{\sqrt{x^2+y^2}}sin(\alpha))=a\\
xcos(\alpha)+ysin(\alpha)=a\\ x 2 + y 2 ( x 2 + y 2 x cos ( α ) + x 2 + y 2 y s in ( α )) = a x cos ( α ) + ys in ( α ) = a
Comments