Question #111156
Find the Cartesian equations of the lines or curves whose polar equations are (a) r = a (b) r = a cos 2θ
(c) r2 = a2 sin 2θ (e) r = a sec(θ − α)
1
Expert's answer
2020-04-21T15:40:08-0400

Note: r=x2+y2;sin(θ)=yx2+y2;cos(θ)=xx2+y2r=\sqrt{x^2+y^2}; sin(\theta)=\frac{y}{\sqrt{x^2+y^2}}; cos(\theta)=\frac{x}{\sqrt{x^2+y^2}}

a) r=ar=a

x2+y2=ax2+y2=a2\sqrt{x^2+y^2}=a\\ x^2+y^2=a^2


b)r=acos(2θ)r=acos(2\theta)

r=a(2cos2(θ)1)x2+y2=a(2(xx2+y2)21)x2+y2=a(2x2x2+y21)x2+y2=ax2y2x2+y2r=a(2cos^2(\theta)-1)\\ \sqrt{x^2+y^2}=a(2(\frac{x}{\sqrt{x^2+y^2}})^2-1)\\ \sqrt{x^2+y^2}=a(\frac{2x^2}{x^2+y^2}-1)\\ \sqrt{x^2+y^2}=a\frac{x^2-y^2}{x^2+y^2}

x2+y2=a2(x2y2)2(x2+y2)2(x2+y2)3=a2(x2y2)2x^2+y^2=a^2\frac{(x^2-y^2)^2}{(x^2+y^2)^2}\\ (x^2+y^2)^3=a^2(x^2-y^2)^2


c) r2=a2sin(2θ)r^2=a^2sin(2\theta)

r2=2a2sin(θ)cos(θ)x2+y2=2a2yx2+y2xx2+y2x2+y2=2a2xyx2+y2(x2+y2)2=2a2xyr^2=2a^2sin(\theta)cos(\theta)\\ x^2+y^2=2a^2\frac{y}{\sqrt{x^2+y^2}}\frac{x}{\sqrt{x^2+y^2}}\\ x^2+y^2=2a^2\frac{xy}{x^2+y^2}\\ (x^2+y^2)^2=2a^2xy


e)r=asec(θα)r=asec(\theta-\alpha)

r=acos(θα)rcos(θα)=ar=\frac{a}{cos(\theta-\alpha)}\\ rcos(\theta-\alpha)=a

r(cos(θ)cos(α)+sin(θ)sin(α))=ar(cos(\theta)cos(\alpha)+sin(\theta)sin(\alpha))=a

x2+y2(xx2+y2cos(α)+yx2+y2sin(α))=axcos(α)+ysin(α)=a\sqrt{x^2+y^2}(\frac{x}{\sqrt{x^2+y^2}}cos(\alpha)+\frac{y}{\sqrt{x^2+y^2}}sin(\alpha))=a\\ xcos(\alpha)+ysin(\alpha)=a\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS