Note: "r=\\sqrt{x^2+y^2}; sin(\\theta)=\\frac{y}{\\sqrt{x^2+y^2}}; cos(\\theta)=\\frac{x}{\\sqrt{x^2+y^2}}"
a) "r=a"
"\\sqrt{x^2+y^2}=a\\\\\nx^2+y^2=a^2"
b)"r=acos(2\\theta)"
"r=a(2cos^2(\\theta)-1)\\\\\n\\sqrt{x^2+y^2}=a(2(\\frac{x}{\\sqrt{x^2+y^2}})^2-1)\\\\\n\\sqrt{x^2+y^2}=a(\\frac{2x^2}{x^2+y^2}-1)\\\\\n\\sqrt{x^2+y^2}=a\\frac{x^2-y^2}{x^2+y^2}"
"x^2+y^2=a^2\\frac{(x^2-y^2)^2}{(x^2+y^2)^2}\\\\\n(x^2+y^2)^3=a^2(x^2-y^2)^2"
c) "r^2=a^2sin(2\\theta)"
"r^2=2a^2sin(\\theta)cos(\\theta)\\\\\nx^2+y^2=2a^2\\frac{y}{\\sqrt{x^2+y^2}}\\frac{x}{\\sqrt{x^2+y^2}}\\\\\nx^2+y^2=2a^2\\frac{xy}{x^2+y^2}\\\\\n(x^2+y^2)^2=2a^2xy"
e)"r=asec(\\theta-\\alpha)"
"r=\\frac{a}{cos(\\theta-\\alpha)}\\\\\nrcos(\\theta-\\alpha)=a"
"r(cos(\\theta)cos(\\alpha)+sin(\\theta)sin(\\alpha))=a"
"\\sqrt{x^2+y^2}(\\frac{x}{\\sqrt{x^2+y^2}}cos(\\alpha)+\\frac{y}{\\sqrt{x^2+y^2}}sin(\\alpha))=a\\\\\nxcos(\\alpha)+ysin(\\alpha)=a\\\\"
Comments
Leave a comment