Answer to Question #106743 in Analytic Geometry for Nikesh gautam pandit ji

Question #106743
Express the following surfaces in spherical coordinates

i) xz = 3
ii) x^2+y^2-z^2=1
1
Expert's answer
2020-03-27T14:34:23-0400

Formulas for converting Euclidean coordinates (x,y,z) to spherical coordinates (r,θ,ϕ)(r,\theta,\phi) have the form:

x=rsinθcosϕy=rsinθsinϕz=rcosθx=r\cdot sin\theta \cdot cos\phi\\y=r\cdot sin\theta \cdot sin\phi\\z=r\cdot cos\theta

The definition of spherical coordinates and their relation to Euclidean coordinates is shown in the figure


The surface (i) xz=3xz=3 in spherical coordinates will be xz=rsinθcosϕrcosθ=r2cosθsinθcosϕ=12r2sin(2θ)cosϕx\cdot z=r\cdot sin\theta \cdot cos\phi \cdot r\cdot cos\theta=r^2\cdot cos\theta \cdot sin\theta\cdot cos\phi=\frac{1}{2}r^2 sin(2\theta)cos\phi

(i) r2sin(2θ)cosϕ=6r^2 sin(2\theta)cos\phi=6

The surface (ii) x2+y2z2=1x^2+y^2-z^2=1 in spherical coordinates will be

x2+y2z2=(rsinθcosϕ)2+(rsinθsinϕ)2(rcosθ)2=r2(sin2θ(cos2ϕ+sin2ϕ)cos2θ)=r2(sin2θcos2θ)=r2cos(2θ)x^2+y^2-z^2=(r\cdot sin\theta \cdot cos\phi)^2+(r\cdot sin\theta \cdot sin\phi)^2-(r\cdot cos\theta )^2=\\r^2\cdot(sin^2\theta\cdot(cos^2\phi+sin^2\phi)-cos^2\theta)=r^2\cdot(sin^2\theta- cos^2\theta)=-r^2\cdot cos(2\theta)

(ii) r2cos(2θ)=1r^2\cdot cos(2\theta)=-1

In deriving these formulas, we used relations for the trigonometric functions of the double angle. The last surface (ii) does not depend on the angle ϕ\phi and thus is the surface of rotation (revolution) around the Z axis.

Answer: The surfaces is expressed in spherical coordinates as

(i) r2sin(2θ)cosϕ=6r^2 \cdot sin(2\theta)\cdot cos\phi=6

(ii) r2cos(2θ)=1r^2\cdot cos(2\theta)=-1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment