Formulas for converting Euclidean coordinates (x,y,z) to spherical coordinates (r,θ,ϕ) have the form:
x=r⋅sinθ⋅cosϕy=r⋅sinθ⋅sinϕz=r⋅cosθ
The definition of spherical coordinates and their relation to Euclidean coordinates is shown in the figure
The surface (i) xz=3 in spherical coordinates will be x⋅z=r⋅sinθ⋅cosϕ⋅r⋅cosθ=r2⋅cosθ⋅sinθ⋅cosϕ=21r2sin(2θ)cosϕ
(i) r2sin(2θ)cosϕ=6
The surface (ii) x2+y2−z2=1 in spherical coordinates will be
x2+y2−z2=(r⋅sinθ⋅cosϕ)2+(r⋅sinθ⋅sinϕ)2−(r⋅cosθ)2=r2⋅(sin2θ⋅(cos2ϕ+sin2ϕ)−cos2θ)=r2⋅(sin2θ−cos2θ)=−r2⋅cos(2θ)
(ii) r2⋅cos(2θ)=−1
In deriving these formulas, we used relations for the trigonometric functions of the double angle. The last surface (ii) does not depend on the angle ϕ and thus is the surface of rotation (revolution) around the Z axis.
Answer: The surfaces is expressed in spherical coordinates as
(i) r2⋅sin(2θ)⋅cosϕ=6
(ii) r2⋅cos(2θ)=−1
Comments
Leave a comment