First we check if system "\\{v_1, v_2, v_3 \\}" is linearly independent.
"\\begin{pmatrix}\n 3 & -2 & -2 \\\\\n 2 & -1 & -2 \\\\\n -1 & 1 & 1\n\\end{pmatrix} \\overset{R_1 - R_2 + R_3}{=}\n\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 2 & -1 & -2 \\\\\n -1 & 1 & 1\n\\end{pmatrix} \\overset{R_2 + 2R_3}{=}\n\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n -1 & 1 & 1\n\\end{pmatrix} \\overset{R_3 \\to -R_3, R_3 + R_1 + R_2}{=}\\\\\n=\\begin{pmatrix}\n 0 & 0 & 1 \\\\\n 0 & 1 & 0 \\\\\n 1 & 0 & 0\n\\end{pmatrix}"
Thus, space of linear combinations of "v_1, v_2, v_3" includes all vectors of "R^3", so h can take on any value.
Comments
Leave a comment