First we check if system { v 1 , v 2 , v 3 } \{v_1, v_2, v_3 \} { v 1 , v 2 , v 3 } is linearly independent.
( 3 − 2 − 2 2 − 1 − 2 − 1 1 1 ) = R 1 − R 2 + R 3 ( 0 0 1 2 − 1 − 2 − 1 1 1 ) = R 2 + 2 R 3 ( 0 0 1 0 1 0 − 1 1 1 ) = R 3 → − R 3 , R 3 + R 1 + R 2 = ( 0 0 1 0 1 0 1 0 0 ) \begin{pmatrix}
3 & -2 & -2 \\
2 & -1 & -2 \\
-1 & 1 & 1
\end{pmatrix} \overset{R_1 - R_2 + R_3}{=}
\begin{pmatrix}
0 & 0 & 1 \\
2 & -1 & -2 \\
-1 & 1 & 1
\end{pmatrix} \overset{R_2 + 2R_3}{=}
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 1 & 1
\end{pmatrix} \overset{R_3 \to -R_3, R_3 + R_1 + R_2}{=}\\
=\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} ⎝ ⎛ 3 2 − 1 − 2 − 1 1 − 2 − 2 1 ⎠ ⎞ = R 1 − R 2 + R 3 ⎝ ⎛ 0 2 − 1 0 − 1 1 1 − 2 1 ⎠ ⎞ = R 2 + 2 R 3 ⎝ ⎛ 0 0 − 1 0 1 1 1 0 1 ⎠ ⎞ = R 3 → − R 3 , R 3 + R 1 + R 2 = ⎝ ⎛ 0 0 1 0 1 0 1 0 0 ⎠ ⎞
Thus, space of linear combinations of v 1 , v 2 , v 3 v_1, v_2, v_3 v 1 , v 2 , v 3 includes all vectors of R 3 R^3 R 3 , so h can take on any value.
Comments