First we check if system {v1,v2,v3}\{v_1, v_2, v_3 \}{v1,v2,v3} is linearly independent.
(3−2−22−1−2−111)=R1−R2+R3(0012−1−2−111)=R2+2R3(001010−111)=R3→−R3,R3+R1+R2=(001010100)\begin{pmatrix} 3 & -2 & -2 \\ 2 & -1 & -2 \\ -1 & 1 & 1 \end{pmatrix} \overset{R_1 - R_2 + R_3}{=} \begin{pmatrix} 0 & 0 & 1 \\ 2 & -1 & -2 \\ -1 & 1 & 1 \end{pmatrix} \overset{R_2 + 2R_3}{=} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix} \overset{R_3 \to -R_3, R_3 + R_1 + R_2}{=}\\ =\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}⎝⎛32−1−2−11−2−21⎠⎞=R1−R2+R3⎝⎛02−10−111−21⎠⎞=R2+2R3⎝⎛00−1011101⎠⎞=R3→−R3,R3+R1+R2=⎝⎛001010100⎠⎞
Thus, space of linear combinations of v1,v2,v3v_1, v_2, v_3v1,v2,v3 includes all vectors of R3R^3R3, so h can take on any value.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments