Coordinates of the point Z:
"x=\\frac{x_1+\\frac{2}{3}x_2}{1+\\frac{2}{3}}=\\frac{1+\\frac{2}{3}*2}{1+\\frac{2}{3}}=\\frac{7}{5}."
"y=\\frac{y_1+\\frac{2}{3}y_2}{1+\\frac{2}{3}}=\\frac{2+\\frac{2}{3}*3}{1+\\frac{2}{3}}=\\frac{12}{5}."
"z=\\frac{z_1+\\frac{2}{3}z_2}{1+\\frac{2}{3}}=\\frac{4+\\frac{2}{3}*5}{1+\\frac{2}{3}}=\\frac{22}{5}."
So, the position vector of a point Z is:
"\\frac{1}{5}(7i+12j+22k)."
Comments
Leave a comment