Coordinates of the point Z:
x=x1+23x21+23=1+23∗21+23=75.x=\frac{x_1+\frac{2}{3}x_2}{1+\frac{2}{3}}=\frac{1+\frac{2}{3}*2}{1+\frac{2}{3}}=\frac{7}{5}.x=1+32x1+32x2=1+321+32∗2=57.
y=y1+23y21+23=2+23∗31+23=125.y=\frac{y_1+\frac{2}{3}y_2}{1+\frac{2}{3}}=\frac{2+\frac{2}{3}*3}{1+\frac{2}{3}}=\frac{12}{5}.y=1+32y1+32y2=1+322+32∗3=512.
z=z1+23z21+23=4+23∗51+23=225.z=\frac{z_1+\frac{2}{3}z_2}{1+\frac{2}{3}}=\frac{4+\frac{2}{3}*5}{1+\frac{2}{3}}=\frac{22}{5}.z=1+32z1+32z2=1+324+32∗5=522.
So, the position vector of a point Z is:
15(7i+12j+22k).\frac{1}{5}(7i+12j+22k).51(7i+12j+22k).
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments