We are given α→=α1i+α2j+α3k\overrightarrow{\alpha}=\alpha_1i+\alpha_2j+\alpha_3kα=α1i+α2j+α3k and β→=β1i+β2j+β3k\overrightarrow{\beta}=\beta_1i+\beta_2j+\beta_3kβ=β1i+β2j+β3k
Then the dot product of both vector is α→.β→\overrightarrow{\alpha}.\overrightarrow{\beta}α.β
α→.β→=α1β1+α2β2+α3β3\overrightarrow{\alpha}.\overrightarrow{\beta}=\alpha_1\beta_1+\alpha_2\beta_2+\alpha_3\beta_3α.β=α1β1+α2β2+α3β3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments