Division of a line segment in a given ratio is: x=x1+ky11+k,y=x2+ky21+k,z=x3+ky31+kx=\frac{x_1+ky_1}{1+k},y=\frac{x_2+ky_2}{1+k},z=\frac{x_3+ky_3}{1+k}x=1+kx1+ky1,y=1+kx2+ky2,z=1+kx3+ky3 where
(x1,x2,x3)(x_1,x_2,x_3)(x1,x2,x3) is(1,2,4)(1,2,4)(1,2,4) , (y1,y2,y3)(y_1,y_2,y_3)(y1,y2,y3) is (2,3,5)(2,3,5)(2,3,5) ,k=23k=\frac{2}{3}k=32 ,hence x=7/5,=12/5,z=22/5x=7/5,=12/5,z=22/5x=7/5,=12/5,z=22/5
hence Z= 15(7i+12j+22k)\frac{1}{5}(7i+12j+22k)51(7i+12j+22k)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments