Find the angle between the vectors α ˉ = 2 i + 2 j − k \bar{\alpha}=2i+2j-k α ˉ = 2 i + 2 j − k and β ˉ = 6 i − 3 j + 2 k \bar{\beta}=6i-3j+2k β ˉ = 6 i − 3 j + 2 k
The cosine of the angle θ \theta θ between two vectors is equal to the dot product of this vectors divided by the product of vector magnitude
cos θ = α ˉ ⋅ β ˉ ∣ α ˉ ∣ ⋅ ∣ β ˉ ∣ \cos \theta={\bar{\alpha}\cdot\bar{\beta} \over |\bar{\alpha}|\cdot|\bar{\beta}|} cos θ = ∣ α ˉ ∣ ⋅ ∣ β ˉ ∣ α ˉ ⋅ β ˉ α ˉ = ( 2 , 2 , − 1 ) , β ˉ = ( 6 , − 3 , 2 ) \bar{\alpha}=(2, 2, -1), \bar{\beta}=(6, -3, 2) α ˉ = ( 2 , 2 , − 1 ) , β ˉ = ( 6 , − 3 , 2 )
α ˉ ⋅ β ˉ = 2 ( 6 ) + 2 ( − 3 ) + ( − 1 ) ( 2 ) = 4 \bar{\alpha}\cdot\bar{\beta}=2(6)+2(-3)+(-1)(2)=4 α ˉ ⋅ β ˉ = 2 ( 6 ) + 2 ( − 3 ) + ( − 1 ) ( 2 ) = 4
∣ α ˉ ∣ = ( 2 ) 2 + ( 2 ) 2 + ( − 1 ) 2 = 3 |\bar{\alpha}|=\sqrt{(2)^2+(2)^2+(-1)^2}=3 ∣ α ˉ ∣ = ( 2 ) 2 + ( 2 ) 2 + ( − 1 ) 2 = 3
∣ β ˉ ∣ = ( 6 ) 2 + ( − 3 ) 2 + ( 2 ) 2 = 7 |\bar{\beta}|=\sqrt{(6)^2+(-3)^2+(2)^2}=7 ∣ β ˉ ∣ = ( 6 ) 2 + ( − 3 ) 2 + ( 2 ) 2 = 7 Hence
cos θ = 4 3 ⋅ 7 = 4 21 \cos \theta={4 \over 3\cdot7}={4 \over 21} cos θ = 3 ⋅ 7 4 = 21 4
θ = arccos 4 21 ≈ 79.02 ° \theta=\arccos{{4 \over 21}}\approx79.02\degree θ = arccos 21 4 ≈ 79.02°
Comments