Question #106593
Find the angle between the vectors
α
Ì

=
2
i
+
2
j

k
αÌ…=2i+2j−k and
\
e
t
a
=
6
i

3
j
+
2
k
\eta=6i−3j+2k.
1
Expert's answer
2020-03-26T14:36:17-0400

Find the angle between the vectors  αˉ=2i+2jk\bar{\alpha}=2i+2j-k and βˉ=6i3j+2k\bar{\beta}=6i-3j+2k

The cosine of the angle θ\theta between two vectors is equal to the dot product of this vectors divided by the product of vector magnitude


cosθ=αˉβˉαˉβˉ\cos \theta={\bar{\alpha}\cdot\bar{\beta} \over |\bar{\alpha}|\cdot|\bar{\beta}|}

αˉ=(2,2,1),βˉ=(6,3,2)\bar{\alpha}=(2, 2, -1), \bar{\beta}=(6, -3, 2)


αˉβˉ=2(6)+2(3)+(1)(2)=4\bar{\alpha}\cdot\bar{\beta}=2(6)+2(-3)+(-1)(2)=4

αˉ=(2)2+(2)2+(1)2=3|\bar{\alpha}|=\sqrt{(2)^2+(2)^2+(-1)^2}=3

βˉ=(6)2+(3)2+(2)2=7|\bar{\beta}|=\sqrt{(6)^2+(-3)^2+(2)^2}=7

Hence


cosθ=437=421\cos \theta={4 \over 3\cdot7}={4 \over 21}

θ=arccos42179.02°\theta=\arccos{{4 \over 21}}\approx79.02\degree


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS