Question #236801

Determine the numerical value of the following expression without the use of a calculator: log10 (1000100) 100 + X 100 n=1 sin(πn) + 1 (−1)n ! · vuut 1000 Y m=1 1 cos(πm) 2 


1
Expert's answer
2021-09-14T06:04:21-0400

(log10(1000100)100+n1100sin(πn)+1(1)n).πm110001cos(πm)2......(1)(\frac{log_{10}(1000^{100})}{100}+\displaystyle\sum_{n-1}^{100}\frac{sin(πn)+1}{(-1)^n}).\sqrt{\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)^2}}......(1)


solve

log10(1000100)100=100log101000100.....[log mn=nlog m]100log10103100=3log1010=3 ......[log1010=1]\frac{log_{10}(1000^{100})}{100}=\frac{100 log_{10}^{1000}}{100}.....[log \space m^{n}=nlog\space m]\\\frac{100log_{10}^{10^{3}}}{100}\\=3log_{10}^{10}\\=3\space......[log_{10}^{10}=1]


Now

n1100sin(πn)+1(1)n)=n1100[1(1)n]=0......(sin πn=0)\displaystyle\sum_{n-1}^{100}\frac{sin(πn)+1}{(-1)^n})=\displaystyle\sum_{n-1}^{100}[\frac{1}{(-1)^n}]=0......(sin\space πn=0) and πm110001cos(πm)2=πm110001cos(πm)=1.......(cos πm=(1)m)\sqrt{\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)^2}}=\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)}=1.......(cos\space πm=(-1)^m)


putting these values in equation 1 we get

(3+0)×1=3(3+0)\times 1=3

so

(log10(1000100)100+n1100sin(πn)+1(1)n).πm110001cos(πm)2=3(\frac{log_{10}(1000^{100})}{100}+\displaystyle\sum_{n-1}^{100}\frac{sin(πn)+1}{(-1)^n}).\sqrt{\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)^2}}=3



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS