( l o g 10 ( 100 0 100 ) 100 + ∑ n − 1 100 s i n ( π n ) + 1 ( − 1 ) n ) . π m − 1 1000 1 c o s ( π m ) 2 . . . . . . ( 1 ) (\frac{log_{10}(1000^{100})}{100}+\displaystyle\sum_{n-1}^{100}\frac{sin(πn)+1}{(-1)^n}).\sqrt{\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)^2}}......(1) ( 100 l o g 10 ( 100 0 100 ) + n − 1 ∑ 100 ( − 1 ) n s in ( πn ) + 1 ) . π m − 1 1000 cos ( πm ) 2 1 ...... ( 1 )
solve
l o g 10 ( 100 0 100 ) 100 = 100 l o g 10 1000 100 . . . . . [ l o g m n = n l o g m ] 100 l o g 10 1 0 3 100 = 3 l o g 10 10 = 3 . . . . . . [ l o g 10 10 = 1 ] \frac{log_{10}(1000^{100})}{100}=\frac{100 log_{10}^{1000}}{100}.....[log \space m^{n}=nlog\space m]\\\frac{100log_{10}^{10^{3}}}{100}\\=3log_{10}^{10}\\=3\space......[log_{10}^{10}=1] 100 l o g 10 ( 100 0 100 ) = 100 100 l o g 10 1000 ..... [ l o g m n = n l o g m ] 100 100 l o g 10 1 0 3 = 3 l o g 10 10 = 3 ...... [ l o g 10 10 = 1 ]
Now
∑ n − 1 100 s i n ( π n ) + 1 ( − 1 ) n ) = ∑ n − 1 100 [ 1 ( − 1 ) n ] = 0...... ( s i n π n = 0 ) \displaystyle\sum_{n-1}^{100}\frac{sin(πn)+1}{(-1)^n})=\displaystyle\sum_{n-1}^{100}[\frac{1}{(-1)^n}]=0......(sin\space πn=0) n − 1 ∑ 100 ( − 1 ) n s in ( πn ) + 1 ) = n − 1 ∑ 100 [ ( − 1 ) n 1 ] = 0...... ( s in πn = 0 ) and π m − 1 1000 1 c o s ( π m ) 2 = π m − 1 1000 1 c o s ( π m ) = 1....... ( c o s π m = ( − 1 ) m ) \sqrt{\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)^2}}=\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)}=1.......(cos\space πm=(-1)^m) π m − 1 1000 cos ( πm ) 2 1 = π m − 1 1000 cos ( πm ) 1 = 1....... ( cos πm = ( − 1 ) m )
putting these values in equation 1 we get
( 3 + 0 ) × 1 = 3 (3+0)\times 1=3 ( 3 + 0 ) × 1 = 3
so
( l o g 10 ( 100 0 100 ) 100 + ∑ n − 1 100 s i n ( π n ) + 1 ( − 1 ) n ) . π m − 1 1000 1 c o s ( π m ) 2 = 3 (\frac{log_{10}(1000^{100})}{100}+\displaystyle\sum_{n-1}^{100}\frac{sin(πn)+1}{(-1)^n}).\sqrt{\displaystyle\pi_{m-1}^{1000}\frac{1}{cos(πm)^2}}=3 ( 100 l o g 10 ( 100 0 100 ) + n − 1 ∑ 100 ( − 1 ) n s in ( πn ) + 1 ) . π m − 1 1000 cos ( πm ) 2 1 = 3
Comments