Determine the numerical value of the following expression without the use of a calculator: log10 (1000100) 100 + X 100 n=1 sin(Ï€n) + 1 (−1)n ! · vuut 1000 Y m=1 1 cos(Ï€m) 2Â
"(\\frac{log_{10}(1000^{100})}{100}+\\displaystyle\\sum_{n-1}^{100}\\frac{sin(\u03c0n)+1}{(-1)^n}).\\sqrt{\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)^2}}......(1)"
solve
"\\frac{log_{10}(1000^{100})}{100}=\\frac{100 log_{10}^{1000}}{100}.....[log \\space m^{n}=nlog\\space m]\\\\\\frac{100log_{10}^{10^{3}}}{100}\\\\=3log_{10}^{10}\\\\=3\\space......[log_{10}^{10}=1]"
Now
"\\displaystyle\\sum_{n-1}^{100}\\frac{sin(\u03c0n)+1}{(-1)^n})=\\displaystyle\\sum_{n-1}^{100}[\\frac{1}{(-1)^n}]=0......(sin\\space \u03c0n=0)" and "\\sqrt{\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)^2}}=\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)}=1.......(cos\\space \u03c0m=(-1)^m)"
putting these values in equation 1 we get
"(3+0)\\times 1=3"
so
"(\\frac{log_{10}(1000^{100})}{100}+\\displaystyle\\sum_{n-1}^{100}\\frac{sin(\u03c0n)+1}{(-1)^n}).\\sqrt{\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)^2}}=3"
Comments
Leave a comment