Answer to Question #236801 in Algebra for shoaib

Question #236801

Determine the numerical value of the following expression without the use of a calculator: log10 (1000100) 100 + X 100 n=1 sin(πn) + 1 (−1)n ! · vuut 1000 Y m=1 1 cos(πm) 2 


1
Expert's answer
2021-09-14T06:04:21-0400

"(\\frac{log_{10}(1000^{100})}{100}+\\displaystyle\\sum_{n-1}^{100}\\frac{sin(\u03c0n)+1}{(-1)^n}).\\sqrt{\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)^2}}......(1)"


solve

"\\frac{log_{10}(1000^{100})}{100}=\\frac{100 log_{10}^{1000}}{100}.....[log \\space m^{n}=nlog\\space m]\\\\\\frac{100log_{10}^{10^{3}}}{100}\\\\=3log_{10}^{10}\\\\=3\\space......[log_{10}^{10}=1]"


Now

"\\displaystyle\\sum_{n-1}^{100}\\frac{sin(\u03c0n)+1}{(-1)^n})=\\displaystyle\\sum_{n-1}^{100}[\\frac{1}{(-1)^n}]=0......(sin\\space \u03c0n=0)" and "\\sqrt{\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)^2}}=\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)}=1.......(cos\\space \u03c0m=(-1)^m)"


putting these values in equation 1 we get

"(3+0)\\times 1=3"

so

"(\\frac{log_{10}(1000^{100})}{100}+\\displaystyle\\sum_{n-1}^{100}\\frac{sin(\u03c0n)+1}{(-1)^n}).\\sqrt{\\displaystyle\\pi_{m-1}^{1000}\\frac{1}{cos(\u03c0m)^2}}=3"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS