Given that "A^{-1}=\\frac{1}{\\textup{det}(A)}\\begin{bmatrix}d&-b\\\\-c&a\\end{bmatrix}" with "\\textup{det}(A)\\neq 0", consider the following statements:
(i) "\\frac{1}{\\textup{det}(A)}\\begin{bmatrix}d&-b\\\\-c&a\\end{bmatrix}=\\frac{1}{\\textup{det}(A)}\\textup{adj}(A)" ;
(ii) "A=\\begin{bmatrix}a&c\\\\b&d\\end{bmatrix}^T" ;
(iii) "\\textup{adj}(A)=\\begin{bmatrix}d&-c\\\\-b&a\\end{bmatrix}^T"
Which of the above are true?
We know that for an invertible matrix A
"A^{-1}=\\frac{1}{det(A)}.adJ(A)....(I)"
For a 2×2 matrix "A=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix}"
"A^{-1}=\\frac{1}{det(A)}\\begin{bmatrix}\n d & -b \\\\\n -c & a\n\\end{bmatrix}......(2)"
We gave
"A^{-1}=\\frac{1}{det(A)}\\begin{bmatrix}\n d & -b \\\\\n -c & a\n\\end{bmatrix}\\space with A\\#0"
Therefore from equition 1 we can conclude that
"A^{-1}=\\frac{1}{det(A)}.adJ(A)=\\frac{1}{det(A)}\\begin{bmatrix}\n d & -b \\\\\n -c & a\n\\end{bmatrix}.....(2)"
Since we have
"A^{-1}=\\frac{1}{det(A)}\\begin{bmatrix}\n d & -b \\\\\n -c & a\n\\end{bmatrix}"
Therefore
"A=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix}"
"A=\\begin{bmatrix}\n a & b \\\\\n c & d\n\\end{bmatrix}^{T}....(4)"
Also
adj(A)"=\\begin{bmatrix}\n d & -b \\\\\n -c & a\n\\end{bmatrix}=\\begin{bmatrix}\n d & -c \\\\\n -b & a\n\\end{bmatrix}^{T}....(5)"
Hence, proved that (I)(ii) and (iii) are all true.
Comments
Leave a comment