Question #236786

Polynomial Inequalities:

9) 2x^2 > 5x + 3

show number line and answer in interval notation


1
Expert's answer
2021-09-22T22:54:48-0400

Let us solve the equality 2x2>5x+3,2x^2 > 5x + 3, which is equivalent to 2x25x3>0,2x^2 - 5x - 3>0, and hence to (x3)(2x+1)>0.(x-3)(2x+1)>0. The equation (x3)(2x+1)=0(x-3)(2x+1)=0 has two roots x1=3, x2=12=0.5.x_1=3,\ x_2=-\frac{1}2=-0.5.

Let us use number line test. For this draw the following intervals:



Since 2(1)25(1)3=4>0, 202503=3<0,2(-1)^2-5(-1)-3=4>0,\ 2\cdot0^2-5\cdot 0-3=-3<0, and 242543=9>0,2\cdot 4^2-5\cdot 4-3=9>0, we conclude that the solutions of the inequality belongs to the real interval (,0.5)(3,+).(-\infty, -0.5)\cup(3,+\infty).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS